Jamur dari Mangrove sebagai Sumber Senyawa Metabolit Sekunder Bioaktif yang Berpotensi sebagai Kandidat Antikanker: Review Literatur

Penulis

DOI:

https://doi.org/10.36733/medicamento.v9i2.6910

Kata Kunci:

antikanker, jamur endofit dari mangrove, metabolit sekunder, sitotoksik

Abstrak

Kanker merupakan penyebab utama kematian di seluruh dunia, terhitung hampir 10 juta kematian pada tahun 2020. Saat ini pengobatan kanker masih mengandalkan kemoterapi, namun sebagian besar obat antikanker menunjukkan toksisitas nonspesifik terhadap proliferasi sel normal yang mengakibatkan berbagai efek samping, dan tidak efektif terhadap berbagai bentuk kanker. Selain itu, meningkatnya kasus kemoresistensi sel kanker terhadap kemoterapi telah mendorong penemuan agen antikanker baru. Bahan alam dikenal sebagai asal dari beberapa agen antikanker yang digunakan secara klinis, seperti taxol dan vinkristin. Di antara bahan alam, jamur yang berasal dari mangrove telah menarik minat peneliti yang dibuktikan dengan meningkatnya jumlah publikasi metabolit sekunder sitotoksik yang dilaporkan. Artikel review ini bertujuan untuk menyediakan informasi secara komprehensif tentang metabolit sekunder sitotoksik yang dihasilkan oleh jamur yang berasal dari mangrove, dalam upaya penemuan senyawa penuntun antikanker dari bahan alam. Data dikumpulkan dari artikel penelitian yang dipublikasikan pada sumber ilmiah seperti Google Scholar, PubMed, Taylor and Francis, Elsevier, dan MDPI, dalam rentang tahun 2011-2022. Lima puluh empat metabolit sekunder sitotoksik dengan nilai IC50 di bawah 10 µM diuraikan dalam artikel ini, yang diklasifikasikan menjadi 8 kelompok metabolit. Senyawa-senyawa tersebut dilaporkan dari 16 genera jamur yang berasosiasi dengan mangrove. Aspergillus dan Penicillium adalah penghasil metabolit sitotoksik yang paling sering dilaporkan dan menunjukkan potensi besar sebagai sumber farmakofor untuk kandidat antikanker.

Biografi Penulis

Ni Kadek Ari Kristiani, Universitas Udayana

Departemen Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam.

I Putu Yogi Astara Putra, Universitas Udayana

Program Magister Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam

Ni Wayan Prasanthi Swarna Putri, Universitas Udayana

Departemen Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam

Ni Putu Eka Leliqia, Universitas Udayana

Departemen Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam

Nonye Treasure Ujam, Enugu State University of Science and Technology (ESUT)

Departemen Mikrobiologi Farmasi dan Bioteknologi, Fakultas Ilmu Kefarmasian.

Ni Putu Ariantari, Universitas Udayana

Departemen Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam.

Referensi

Li KH, Griffin T, Nikbakht N, et al. Neoplasms. Pract Immunodermatology. Published online 2016:279-296. doi:10.1007/978-94-024-0902-4_12

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660

WHO. WHO Report On Cancer In Indonesia.; 2020. WHO, CANCER REPORT 2020

Joel EL, Valentin Bhimba B. Evaluation of Secondary Metabolites from Mangrove Associated Fungi Meyerozyma guilliermondii. Alexandria J Med. 2013;49(3):189-194. doi:10.1016/j.ajme.2013.04.003

Ali Abdalla YO, Subramaniam B, Nyamathulla S, et al. Natural Products for Cancer Therapy: A Review of Their Mechanism of Actions and Toxicity in the Past Decade. J Trop Med. 2022;2022. doi:10.1155/2022/5794350

Ariantari NP, Ancheeva E, Frank M, et al. Didymellanosine, a New Decahydrofluorene Analogue, and Ascolactone C from: Didymella sp. IEA-3B.1, an Endophyte of Terminalia catappa. RSC Adv. 2020;10(12):7232-7240. doi:10.1039/c9ra10685e

Handayani D, Mulia P, Andayani R, Wahyuni FS, Ariantari NP. Secondary Metabolite from Mangrove Endophytic Fungus Fusarium proliferatum AED3. Rasayan J Chem. 2021;2021(Special Issue):150-155. doi:10.31788/RJC.2021.1456447

Pudhom K, Teerawatananond T, Chookpaiboon S. Spirobisnaphthalenes from the Mangrove-Derived Fungus Rhytidhysteron sp. AS21B. Mar Drugs. 2014;12(3):1271-1280. doi:10.3390/md12031271

Shearer CA, Descals E, Kohlmeyer B, et al. Fungal Biodiversity in Aquatic Habitats. Biodivers Conserv. 2007;16(1):49-67. doi:10.1007/s10531-006-9120-z

De Souza Sebastianes FL, Romão-Dumaresq AS, Lacava PT, et al. Species Diversity of Culturable Endophytic Fungi from Brazilian Mangrove Forests. Curr Genet. 2013;59(3):153-166. doi:10.1007/s00294-013-0396-8

Dulo B, Phan K, Githaiga J, Raes K, De Meester S. Natural Quinone Dyes: A Review on Structure, Extraction Techniques, Analysis and Application Potential. Vol 12. Springer Netherlands; 2021. doi:10.1007/s12649-021-01443-9

Chen H, Zhu X, Zhong LL, et al. Synthesis and Antitumor Activities of Derivatives of the Marine Mangrove Fungal Metabolite Deoxybostrycin. Mar Drugs. 2012;10(12):2715-2728. doi:10.3390/md10122715

Mishra PD, Verekar SA, Deshmukh SK, Joshi KS, Fiebig HH, Kelter G. Altersolanol A: A Selective Cytotoxic Anthraquinone from a Phomopsis sp. Lett Appl Microbiol. 2015;60(4):387-391. doi:10.1111/lam.12384

Isaka M, Chinthanom P, Rachtawee P, et al. Cytotoxic Hydroanthraquinones from the Mangrove-Derived Fungus Paradictyoarthrinium diffractum BCC 8704. J Antibiot (Tokyo). 2015;68(5):334-338. doi:10.1038/ja.2014.153

Liu H, Yan C, Li C, You T, She Z. Naphthoquinone Derivatives with Anti-Inflammatory Activity from Mangrove-Derived Endophytic Fungus Talaromyces sp. SK-S009. Molecules. 2020;25(3):1-9. doi:10.3390/molecules25030576

Guoliang Z, Zhang X, Shah M, et al. Polyhydroxy p -Terphenyls from a Mangrove Endophytic. Mar Drugs. Published online 2021:1-10.

Jakočiūnas T, Klitgaard AK, Kontou EE, et al. Programmable Polyketide Biosynthesis Platform for Production of Aromatic Compounds in Yeast. Synth Syst Biotechnol. 2020;5(1):11-18. doi:10.1016/j.synbio.2020.01.004

Zhang W, Zhao B, Du L, Shen Y. Cytotoxic Polyketides with an Oxygen-Bridged Cyclooctadiene Core Skeleton from the Mangrove Endophytic Fungus Phomosis sp. A818. Molecules. 2017;22(9). doi:10.3390/molecules22091547

Wei C, Deng Q, Sun M, Xu J. Cytospyrone and Cytospomarin: Two New Polyketides Isolated from Mangrove Endophytic Fungus, Cytospora sp. Molecules. 2020;25(18):1-9. doi:10.3390/molecules25184224

Yu X, Müller WEG, Meier D, et al. Polyketide Derivatives from Mangrove Derived Endophytic Fungus Pseudopestalotiopsis theae. Mar Drugs. 2020;18(2):1-15. doi:10.3390/md18020129

Li T, Wang Y, Li L, et al. New Cytotoxic Cytochalasans from a Plant-Associated Fungus Chaetomium globosum Kz-19. Mar Drugs. 2021;19(8):1-10. doi:10.3390/md19080438

Wang CF, Ma J, Jing QQ, et al. Integrating Activity-Guided Strategy and Fingerprint Analysis to Target Potent Cytotoxic Brefeldin A from a Fungal Library of the Medicinal Mangrove Acanthus ilicifolius. Mar Drugs. 2022;20(7). doi:10.3390/md20070432

Feng T, Wei C, Deng X, Chen D, Wen Z, Xu J. Epigenetic Manipulation Induced Production of Immunosuppressive Chromones and Cytochalasins from the Mangrove Endophytic Fungus Phomopsis asparagi DHS-48. Mar Drugs. 2022;20(10). doi:10.3390/md20100616

Vermerris W, Nicholson R. Phenolic Compound Biochemistry. Choice Rev Online. 2007;45(02):45-0882-45-0882. doi:10.5860/choice.45-0882

Wang J, Lu Z, Liu P, et al. Cytotoxic Polyphenols from the Fungus Penicillium expansum 091006 Endogenous with the Mangrove Plant Excoecaria agallocha. Planta Med. 2012;78(17):1861-1866. doi:10.1055/s-0032-1315395

Wang J, Cox DG, Ding W, Huang G, Lin Y, Li C. Three New Resveratrol Derivatives from the Mangrove Endophytic Fungus Alternaria sp. Mar Drugs. 2014;12(5):2840-2850. doi:10.3390/md12052840

Liu J, Xu M, Zhu MY, Feng Y. Chemoreversal Metabolites from the Endophytic Fungus Penicillium citrinum Isolated from a Mangrove Avicennia marina. Nat Prod Commun. 2015;10(7):1203-1205. doi:10.1177/1934578x1501000717

Chen S, Chen D, Cai R, et al. Cytotoxic and Antibacterial Preussomerins from the Mangrove Endophytic Fungus Lasiodiplodia theobromae ZJ-HQ1. J Nat Prod. 2016;79(9):2397-2402. doi:10.1021/acs.jnatprod.6b00639

Li F, Guo W, Che Q, Zhu T, Gu Q, Li D. Versicones E-H and Arugosin K Produced by the Mangrove-Derived Fungus Aspergillus versicolor HDN11-84. J Antibiot (Tokyo). 2017;70(2):174-178. doi:10.1038/ja.2016.95

Yu G, Wu G, Sun Z, et al. Cytotoxic Tetrahydroxanthone Dimers from the Mangrove-Associated Fungus Aspergillus versicolor HDN1009. Mar Drugs. 2018;16(9). doi:10.3390/md16090335

Tiwari P, Bae H. Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms. 2022;10(2). doi:10.3390/microorganisms10020360

Ebrahim W, Kjer J, El Amrani M, et al. Pullularins E and F, Two New Peptides from the Endophytic Fungus Bionectria ochroleuca Isolated from the Mangrove Plant Sonneratia caseolaris. Mar Drugs. 2012;10(5):1081-1091. doi:10.3390/md10051081

Deng CM, Liu SX, Huang CH, Pang JY, Lin YC. Secondary Metabolites of a Mangrove Endophytic Fungus Aspergillus terreus (No. GX7-3B) from the South China Sea. Mar Drugs. 2013;11(7):2616-2624. doi:10.3390/md11072616

Zhu M, Yang Z, Feng H, et al. Trichodermamides D-F, Heterocyclic Dipeptides with a Highly Functionalized 1,2-Oxazadecaline Core Isolated from the Endophytic Fungus: Penicillium janthinellum HDN13-309. RSC Adv. 2017;7(76):48019-48024. doi:10.1039/c7ra10389a

Niu S, He J, Huang S, et al. Phaeosphamides A and B, Cytotoxic Cyclodecadepsipeptides from the Mangrove-Derived Fungus Phaeosphaeriopsis sp. S296. Mar Drugs. 2022;20(10):1-11. doi:10.3390/md20100591

Zorrilla JG, Evidente A. Structures and Biological Activities of Alkaloids Produced by Mushrooms, a Fungal Subgroup. Biomolecules. 2022;12(8):1-25. doi:10.3390/biom12081025

Zhu F, Wu J, Chen G, Lu W, Pan J. Biosynthesis, Characterization and Biological Evaluation of Fe(III) and Cu(II) Complexes of Neoaspergillic Acid, a Hydroxamate Siderophore Produced by Co-Cultures of Two Marine-Derived Mangrove Epiphytic Fungi. Nat Prod Commun. 2011;6(8):1137-1140. doi:10.1177/1934578x1100600824

Zhou ZF, Kurtan T, Yang XH, et al. ChemInform Abstract: Penibruguieramine A, a Novel Pyrrolizidine Alkaloid from the Endophytic Fungus Penicillium sp. GD6 Associated with Chinese Mangrove Bruguiera gymnorrhiza. ChemInform. 2014;45(33). doi:10.1002/chin.201433224

Huang S, Chen H, Li W, Zhu X, Ding W, Li C. Bioactive Chaetoglobosins from the Mangrove Endophytic Fungus Penicillium chrysogenum. Mar Drugs. 2016;14(10):1-12. doi:10.3390/md14100172

Wu Y, Chen S, Liu H, et al. Cytotoxic Isocoumarin Derivatives from the Mangrove Endophytic Fungus Aspergillus sp. HN15-5D. Arch Pharm Res. 2019;42(4):326-331. doi:10.1007/s12272-018-1019-1

Chen Y, Wang G, Yuan Y, et al. Metabolites With Cytotoxic Activities From the Mangrove Endophytic Fungus Fusarium sp. 2ST2. Front Chem. 2022;10(February):1-8. doi:10.3389/fchem.2022.842405

Liu Y, Stuhldreier F, Kurtán T, et al. Daldinone Derivatives from the Mangrove-Derived Endophytic Fungus: Annulohypoxylon sp. RSC Adv. 2017;7(9):5381-5393. doi:10.1039/c6ra27306h

Teiten MH, Mack F, Debbab A, Aly AH, Dicato M, Proksch P, Diederich M. Anticancer Effect of Altersolanol A, a Metabolite Produced by the Endophytic Fungus Stemphylium globuliferum, Mediated by its Pro-apoptotic and Anti-invasive Potential via the Inhibition of NF-κB Activity. 2013;21(13):3850-8. doi: 10.1016/j.bmc.2013.04.024

Feng S, Wang W. Bioactivities and Structure-Activity Relationships of Natural Tetrahydroanthraquinone Compounds: A Review. 2020;11(799):1-10. doi: 10.3389/fphar.2020.00799

Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. 2006;99:191-203. doi:10.1016/j.foodchem.2005.07.042

Diterbitkan

30-09-2023

Cara Mengutip

Kristiani, N. K. A., Putra, I. P. Y. A., Putri, N. W. P. S. ., Leliqia, N. P. E., Ujam, N. T., & Ariantari, N. P. (2023). Jamur dari Mangrove sebagai Sumber Senyawa Metabolit Sekunder Bioaktif yang Berpotensi sebagai Kandidat Antikanker: Review Literatur. Jurnal Ilmiah Medicamento, 9(2), 115–126. https://doi.org/10.36733/medicamento.v9i2.6910

Terbitan

Bagian

Artikel review