Mangrove-Derived Fungi as a Reservoir of Bioactive Secondary Metabolites Promising for Anticancer Leads: A Literature Review

Authors

DOI:

https://doi.org/10.36733/medicamento.v9i2.6910

Keywords:

anticancer, cytotoxic, mangrove-derived fungi, secondary metabolites

Abstract

Cancer was the leading cause of death, which accounting for nearly 10 million deaths globally in 2020. Currently, cancer treatment still relies on chemotherapy, however, most anticancer drugs showed non-specific toxicity to normal cell proliferation resulting in various side effects, and are ineffective against many forms of cancer. In addition, the increasing case of chemoresistance of cancer cells to chemotherapy has boosted the discovery of new anticancer agents. Natural products are known as the origin of several clinically used anticancer agents, e.g. taxol and vincristine. Among natural products, mangrove-derived fungi are of particular scientific interest evidenced by the increasing rate of publications on cytotoxic secondary metabolites reported. Hence, this literature review aims to provide comprehensive information on cytotoxic secondary metabolites isolated from mangrove-derived fungi, which might contribute to the search for anticancer leads from natural resources. Data were collected from original research articles published on scientific-based sources such as Google Scholar, PubMed, Taylor and Francis, Elsevier, and MDPI, in the range of 2011-2022. Fifty-four cytotoxic secondary metabolites with IC50 values below 10 µM were described herein, which were classified in to 8 groups of metabolites. These compounds were reported from 16 genera of mangrove-associated fungi. Among them, Aspergillus and Penicillium were the most frequent producers of cytotoxic metabolites, suggesting their enormous potential as a source of pharmacophores for anticancer candidates.

Author Biographies

Ni Kadek Ari Kristiani, Universitas Udayana

Department of Pharmacy, Faculty of Mathematics and Natural Sciences.

I Putu Yogi Astara Putra, Universitas Udayana

Master Program in Biology, Faculty of Mathematics and Natural Sciences

Ni Wayan Prasanthi Swarna Putri, Universitas Udayana

Department of Pharmacy, Faculty of Mathematics and Natural Sciences

Ni Putu Eka Leliqia, Universitas Udayana

Department of Pharmacy, Faculty of Mathematics and Natural Sciences

Nonye Treasure Ujam, Enugu State University of Science and Technology (ESUT)

Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences.

Ni Putu Ariantari, Universitas Udayana

Department of Pharmacy, Faculty of Mathematics and Natural Sciences.

References

Li KH, Griffin T, Nikbakht N, et al. Neoplasms. Pract Immunodermatology. Published online 2016:279-296. doi:10.1007/978-94-024-0902-4_12

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660

WHO. WHO Report On Cancer In Indonesia.; 2020. WHO, CANCER REPORT 2020

Joel EL, Valentin Bhimba B. Evaluation of Secondary Metabolites from Mangrove Associated Fungi Meyerozyma guilliermondii. Alexandria J Med. 2013;49(3):189-194. doi:10.1016/j.ajme.2013.04.003

Ali Abdalla YO, Subramaniam B, Nyamathulla S, et al. Natural Products for Cancer Therapy: A Review of Their Mechanism of Actions and Toxicity in the Past Decade. J Trop Med. 2022;2022. doi:10.1155/2022/5794350

Ariantari NP, Ancheeva E, Frank M, et al. Didymellanosine, a New Decahydrofluorene Analogue, and Ascolactone C from: Didymella sp. IEA-3B.1, an Endophyte of Terminalia catappa. RSC Adv. 2020;10(12):7232-7240. doi:10.1039/c9ra10685e

Handayani D, Mulia P, Andayani R, Wahyuni FS, Ariantari NP. Secondary Metabolite from Mangrove Endophytic Fungus Fusarium proliferatum AED3. Rasayan J Chem. 2021;2021(Special Issue):150-155. doi:10.31788/RJC.2021.1456447

Pudhom K, Teerawatananond T, Chookpaiboon S. Spirobisnaphthalenes from the Mangrove-Derived Fungus Rhytidhysteron sp. AS21B. Mar Drugs. 2014;12(3):1271-1280. doi:10.3390/md12031271

Shearer CA, Descals E, Kohlmeyer B, et al. Fungal Biodiversity in Aquatic Habitats. Biodivers Conserv. 2007;16(1):49-67. doi:10.1007/s10531-006-9120-z

De Souza Sebastianes FL, Romão-Dumaresq AS, Lacava PT, et al. Species Diversity of Culturable Endophytic Fungi from Brazilian Mangrove Forests. Curr Genet. 2013;59(3):153-166. doi:10.1007/s00294-013-0396-8

Dulo B, Phan K, Githaiga J, Raes K, De Meester S. Natural Quinone Dyes: A Review on Structure, Extraction Techniques, Analysis and Application Potential. Vol 12. Springer Netherlands; 2021. doi:10.1007/s12649-021-01443-9

Chen H, Zhu X, Zhong LL, et al. Synthesis and Antitumor Activities of Derivatives of the Marine Mangrove Fungal Metabolite Deoxybostrycin. Mar Drugs. 2012;10(12):2715-2728. doi:10.3390/md10122715

Mishra PD, Verekar SA, Deshmukh SK, Joshi KS, Fiebig HH, Kelter G. Altersolanol A: A Selective Cytotoxic Anthraquinone from a Phomopsis sp. Lett Appl Microbiol. 2015;60(4):387-391. doi:10.1111/lam.12384

Isaka M, Chinthanom P, Rachtawee P, et al. Cytotoxic Hydroanthraquinones from the Mangrove-Derived Fungus Paradictyoarthrinium diffractum BCC 8704. J Antibiot (Tokyo). 2015;68(5):334-338. doi:10.1038/ja.2014.153

Liu H, Yan C, Li C, You T, She Z. Naphthoquinone Derivatives with Anti-Inflammatory Activity from Mangrove-Derived Endophytic Fungus Talaromyces sp. SK-S009. Molecules. 2020;25(3):1-9. doi:10.3390/molecules25030576

Guoliang Z, Zhang X, Shah M, et al. Polyhydroxy p -Terphenyls from a Mangrove Endophytic. Mar Drugs. Published online 2021:1-10.

Jakočiūnas T, Klitgaard AK, Kontou EE, et al. Programmable Polyketide Biosynthesis Platform for Production of Aromatic Compounds in Yeast. Synth Syst Biotechnol. 2020;5(1):11-18. doi:10.1016/j.synbio.2020.01.004

Zhang W, Zhao B, Du L, Shen Y. Cytotoxic Polyketides with an Oxygen-Bridged Cyclooctadiene Core Skeleton from the Mangrove Endophytic Fungus Phomosis sp. A818. Molecules. 2017;22(9). doi:10.3390/molecules22091547

Wei C, Deng Q, Sun M, Xu J. Cytospyrone and Cytospomarin: Two New Polyketides Isolated from Mangrove Endophytic Fungus, Cytospora sp. Molecules. 2020;25(18):1-9. doi:10.3390/molecules25184224

Yu X, Müller WEG, Meier D, et al. Polyketide Derivatives from Mangrove Derived Endophytic Fungus Pseudopestalotiopsis theae. Mar Drugs. 2020;18(2):1-15. doi:10.3390/md18020129

Li T, Wang Y, Li L, et al. New Cytotoxic Cytochalasans from a Plant-Associated Fungus Chaetomium globosum Kz-19. Mar Drugs. 2021;19(8):1-10. doi:10.3390/md19080438

Wang CF, Ma J, Jing QQ, et al. Integrating Activity-Guided Strategy and Fingerprint Analysis to Target Potent Cytotoxic Brefeldin A from a Fungal Library of the Medicinal Mangrove Acanthus ilicifolius. Mar Drugs. 2022;20(7). doi:10.3390/md20070432

Feng T, Wei C, Deng X, Chen D, Wen Z, Xu J. Epigenetic Manipulation Induced Production of Immunosuppressive Chromones and Cytochalasins from the Mangrove Endophytic Fungus Phomopsis asparagi DHS-48. Mar Drugs. 2022;20(10). doi:10.3390/md20100616

Vermerris W, Nicholson R. Phenolic Compound Biochemistry. Choice Rev Online. 2007;45(02):45-0882-45-0882. doi:10.5860/choice.45-0882

Wang J, Lu Z, Liu P, et al. Cytotoxic Polyphenols from the Fungus Penicillium expansum 091006 Endogenous with the Mangrove Plant Excoecaria agallocha. Planta Med. 2012;78(17):1861-1866. doi:10.1055/s-0032-1315395

Wang J, Cox DG, Ding W, Huang G, Lin Y, Li C. Three New Resveratrol Derivatives from the Mangrove Endophytic Fungus Alternaria sp. Mar Drugs. 2014;12(5):2840-2850. doi:10.3390/md12052840

Liu J, Xu M, Zhu MY, Feng Y. Chemoreversal Metabolites from the Endophytic Fungus Penicillium citrinum Isolated from a Mangrove Avicennia marina. Nat Prod Commun. 2015;10(7):1203-1205. doi:10.1177/1934578x1501000717

Chen S, Chen D, Cai R, et al. Cytotoxic and Antibacterial Preussomerins from the Mangrove Endophytic Fungus Lasiodiplodia theobromae ZJ-HQ1. J Nat Prod. 2016;79(9):2397-2402. doi:10.1021/acs.jnatprod.6b00639

Li F, Guo W, Che Q, Zhu T, Gu Q, Li D. Versicones E-H and Arugosin K Produced by the Mangrove-Derived Fungus Aspergillus versicolor HDN11-84. J Antibiot (Tokyo). 2017;70(2):174-178. doi:10.1038/ja.2016.95

Yu G, Wu G, Sun Z, et al. Cytotoxic Tetrahydroxanthone Dimers from the Mangrove-Associated Fungus Aspergillus versicolor HDN1009. Mar Drugs. 2018;16(9). doi:10.3390/md16090335

Tiwari P, Bae H. Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms. 2022;10(2). doi:10.3390/microorganisms10020360

Ebrahim W, Kjer J, El Amrani M, et al. Pullularins E and F, Two New Peptides from the Endophytic Fungus Bionectria ochroleuca Isolated from the Mangrove Plant Sonneratia caseolaris. Mar Drugs. 2012;10(5):1081-1091. doi:10.3390/md10051081

Deng CM, Liu SX, Huang CH, Pang JY, Lin YC. Secondary Metabolites of a Mangrove Endophytic Fungus Aspergillus terreus (No. GX7-3B) from the South China Sea. Mar Drugs. 2013;11(7):2616-2624. doi:10.3390/md11072616

Zhu M, Yang Z, Feng H, et al. Trichodermamides D-F, Heterocyclic Dipeptides with a Highly Functionalized 1,2-Oxazadecaline Core Isolated from the Endophytic Fungus: Penicillium janthinellum HDN13-309. RSC Adv. 2017;7(76):48019-48024. doi:10.1039/c7ra10389a

Niu S, He J, Huang S, et al. Phaeosphamides A and B, Cytotoxic Cyclodecadepsipeptides from the Mangrove-Derived Fungus Phaeosphaeriopsis sp. S296. Mar Drugs. 2022;20(10):1-11. doi:10.3390/md20100591

Zorrilla JG, Evidente A. Structures and Biological Activities of Alkaloids Produced by Mushrooms, a Fungal Subgroup. Biomolecules. 2022;12(8):1-25. doi:10.3390/biom12081025

Zhu F, Wu J, Chen G, Lu W, Pan J. Biosynthesis, Characterization and Biological Evaluation of Fe(III) and Cu(II) Complexes of Neoaspergillic Acid, a Hydroxamate Siderophore Produced by Co-Cultures of Two Marine-Derived Mangrove Epiphytic Fungi. Nat Prod Commun. 2011;6(8):1137-1140. doi:10.1177/1934578x1100600824

Zhou ZF, Kurtan T, Yang XH, et al. ChemInform Abstract: Penibruguieramine A, a Novel Pyrrolizidine Alkaloid from the Endophytic Fungus Penicillium sp. GD6 Associated with Chinese Mangrove Bruguiera gymnorrhiza. ChemInform. 2014;45(33). doi:10.1002/chin.201433224

Huang S, Chen H, Li W, Zhu X, Ding W, Li C. Bioactive Chaetoglobosins from the Mangrove Endophytic Fungus Penicillium chrysogenum. Mar Drugs. 2016;14(10):1-12. doi:10.3390/md14100172

Wu Y, Chen S, Liu H, et al. Cytotoxic Isocoumarin Derivatives from the Mangrove Endophytic Fungus Aspergillus sp. HN15-5D. Arch Pharm Res. 2019;42(4):326-331. doi:10.1007/s12272-018-1019-1

Chen Y, Wang G, Yuan Y, et al. Metabolites With Cytotoxic Activities From the Mangrove Endophytic Fungus Fusarium sp. 2ST2. Front Chem. 2022;10(February):1-8. doi:10.3389/fchem.2022.842405

Liu Y, Stuhldreier F, Kurtán T, et al. Daldinone Derivatives from the Mangrove-Derived Endophytic Fungus: Annulohypoxylon sp. RSC Adv. 2017;7(9):5381-5393. doi:10.1039/c6ra27306h

Teiten MH, Mack F, Debbab A, Aly AH, Dicato M, Proksch P, Diederich M. Anticancer Effect of Altersolanol A, a Metabolite Produced by the Endophytic Fungus Stemphylium globuliferum, Mediated by its Pro-apoptotic and Anti-invasive Potential via the Inhibition of NF-κB Activity. 2013;21(13):3850-8. doi: 10.1016/j.bmc.2013.04.024

Feng S, Wang W. Bioactivities and Structure-Activity Relationships of Natural Tetrahydroanthraquinone Compounds: A Review. 2020;11(799):1-10. doi: 10.3389/fphar.2020.00799

Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. 2006;99:191-203. doi:10.1016/j.foodchem.2005.07.042

Downloads

Published

2023-09-30

How to Cite

Kristiani, N. K. A., Putra, I. P. Y. A., Putri, N. W. P. S. ., Leliqia, N. P. E., Ujam, N. T., & Ariantari, N. P. (2023). Mangrove-Derived Fungi as a Reservoir of Bioactive Secondary Metabolites Promising for Anticancer Leads: A Literature Review. Jurnal Ilmiah Medicamento, 9(2), 115–126. https://doi.org/10.36733/medicamento.v9i2.6910