Kombinasi Teknik Pembentukan Kokristal dan Ball milling untuk Peningkatan Disolusi Etoricoxib

Penulis

DOI:

https://doi.org/10.36733/medicamento.v10i1.7561

Kata Kunci:

asam oksalat, ball milling, etoricoxib, kokristal, Tween 80

Abstrak

Etoricoxib (ETX) merupakan salah satu golongan anti inflamasi selektif COX-2 yang diklasifikasikan dalam BCS kelas II. Penelitian ini bertujuan untuk meningkatkan laju disolusi etoricoxib melalui kombinasi pembentukan kokristal dan ball milling yang dilakukan secara in-situ dan ex-situ. Optimasi dilakukan dengan memvariasikan waktu penggilingan dan jenis stabilizer. Jenis stabilizer yang digunakan meliputi Tween 80 (ETX-OXA-BM-T), Poloxamer 188 (ETX-OXA-BM-P), dan kombinasi Tween 80-sodium lauryl sulfate (SLS) (ETX-OXA-BM-T-S). Percobaan secara in-situ memberikan jumlah rendemen yang sangat rendah (<10%) serta tidak mampu menghasilkan kokristal sehingga tidak layak dilanjutkan. Sementara proses ex-situ memberikan proses yang lebih potensial, sehingga hasil dilanjutkan evaluasi menggunakan Differential Scanning Calorimetry (DSC), Powder X-Ray Diffractometry (PXRD), dan Scanning Electron Microscope (SEM). Analisis DSC dari ETX memberikan puncak endotermik pada 130°C, sementara untuk ETX-OXA, ETX-OXA-BM-T, ETX-OXA-BM-P, dan ETX-OXA-BM-T-S memberikan puncak endotermik pada rentang 179 - 180°C. Difraktogram PXRD untuk ETX-OXA, ETX-OXA-BM-T, ETX-OXA-BM-P, ETX-OXA-BM-T-S memberikan puncak yang sama; dan berbeda dengan ETX. Hasil analisis SEM menunjukkan bahwa ETX-OXA-BM-T dengan waktu milling 60 menit memberikan partikel dalam rentang nanometer yang tidak terindividualiasi. Sementara penggunaan Poloxamer 188 serta kombinasi Tween 80-SLS menghasilkan ukuran partikel > 1 µm. ETX-OXA-BM-T menunjukkan peningkatan kelarutan yang paling tinggi pada semua media. Hasil disolusi ETX-OXA-BM-T menunjukkan adanya peningkatan pada media dapar fosfat pH 6,8. Sementara hasil disolusi pada media dapar pH 1,2 dan dapar pH 4,5 tidak memberikan perbedaan yang signifikan. Pada penelitian ini dapat dibuktikan bahwa kombinasi teknik pembentukan kokristal dan ball milling secara ex-situ merupakan salah satu pendekatan yang potensial untuk meningkatkan laju disolusi dari etoricoxib.

Biografi Penulis

Sharon Susanto, Institut Teknologi Bandung

Sekolah Farmasi

Saleh Wikarsa, Institut Teknologi Bandung

Sekolah Farmasi

Yuda Prasetya Nugraha, Institut Teknologi Bandung

Sekolah Farmasi

Referensi

Arfan AR, Ilmiawati A, Sugita P. Optimization and synthesis of etoricoxib-loaded low molecular weight chitosan nanoparticles. Ciencia Rural. 2022;52(11). doi:10.1590/0103-8478cr20210656

Malviya R, Sharma PK, Dubey SK. Efficiency of self‐assembled etoricoxib containing polyelectrolyte complex stabilized cubic nanoparticles against human cancer cells. Precision Medical Sciences. 2020;9(1):9-22. doi:10.1002/prm2.12004

Dave V, Srivastava P, Tak K, Sharma S. PEG-PLGA- hybrid nanoparticles loaded with etoricoxib–phospholipid complex for effective treatment of inflammation in rat model. J Microencapsul. 2019;36(3):236-249. doi:10.1080/02652048.2019.1617362

Wang Y, Wang L, Zhang F, et al. Structure analysis and insight into hydrogen bond and van der waals interactions of etoricoxib cocrystals and cocrystal solvate. J Mol Struct. 2022;1258. doi:10.1016/j.molstruc.2022.132665

Sapkal SB, Adhao VS, Thenge RR, Darakhe RA, Shinde SA, Shrikhande VN. Formulation and characterization of solid dispersions of etoricoxib using natural polymers. Turk J Pharm Sci. 2020;17(1):7-19. doi:10.4274/tjps.galenos.2018.04880

Banerjee M, Nimkar K, Naik S, Patravale V. Unlocking the potential of drug-drug cocrystals – A comprehensive review. Journal of Controlled Release. 2022;348:456-469. doi:10.1016/j.jconrel.2022.06.003

Yan Y, Wang L, Si Z, Zhang X, Yuan W. A novel cocrystal of metformin hydrochloride with citric acid: Systematic synthesis and computational simulation. European Journal of Pharmaceutics and Biopharmaceutics. 2022;179:37-46. doi:10.1016/j.ejpb.2022.08.013

Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B. 2021;11(8):2537-2564. doi:10.1016/j.apsb.2021.03.030

Panzade P, Shendarkar G, Kulkarni D, Shelke S. Solid state characterization and dissolution enhancement of nevirapine cocrystals. Adv Pharm Bull. 2021;11(4):772-776. doi:10.34172/APB.2021.087

Liu M, Hong C, Li G, Ma P, Xie Y. The generation of myricetin-nicotinamide nanococrystals by top down and bottom up technologies. Nanotechnology. 2016;27(39). doi:10.1088/0957-4484/27/39/395601

Shen D, Jin T, Xiao Y, Zhu X, Hua Y. Preparation of pazopanib-fumarate disodium glycyrrhizinate nanocrystalline micelles by liquid-assisted ball milling. European Journal of Pharmaceutical Sciences. 2023;188. doi:10.1016/j.ejps.2023.106530

Martínez LM, Cruz-Angeles J, Vázquez-Dávila M, et al. Mechanical Activation by Ball Milling as a Strategy to Prepare Highly Soluble Pharmaceutical Formulations in the Form of Co-Amorphous, Co-Crystals, or Polymorphs. Pharmaceutics. 2022;14(10). doi:10.3390/pharmaceutics14102003

Wang Y, Wang L, Zhang F, et al. Structure analysis and insight into hydrogen bond and van der waals interactions of etoricoxib cocrystals and cocrystal solvate. J Mol Struct. 2022;1258:132665. doi:10.1016/j.molstruc.2022.132665

Nugrahani I, Auli WN. Diclofenac-proline nano-co-crystal development, characterization, in vitro dissolution and diffusion study. Heliyon. 2020;6(9). doi:10.1016/j.heliyon.2020.e04864

Missouri State University and Ozarks Environmental and Water Resources Institute (OEWRI). Standard Operating Procedure for: LS 13 320 Laser Diffraction Particle Size Analyzer Operation.; 2008.

Unique IGNP, Nurono S, Nugraha YP. Modifikasi Sifat Fisikokimia Telmisartan melalui Pembentukan Garam. Bandung Institute of Technology; 2023.

Singh S, Mishra A, Verma A, Ghosh AK, Mishra AK. A simple ultraviolet spectrophotometric method for the determination of etoricoxib in dosage formulations. J Adv Pharm Technol Res. 2012;3(4):237-240. doi:10.4103/2231-4040.104715

Huang Z, Staufenbiel S, Bodmeier R. Combination of co-crystal and nanocrystal techniques to improve the solubility and dissolution rate of poorly soluble drugs. Pharm Res. 2022;39(5):949-961. doi:10.1007/s11095-022-03243-9

Shan Chow P, Lau G, Kiong Ng W, Vangala VR. Stability of Pharmaceutical Cocrystal During Milling: A Case Study of 1:1 Caffeine-Glutaric Acid 2. Crystal Growth& Design. 2017;17(8):4064-4071.

Santos JAV, Baptista JA, Santos IC, et al. Pharmaceutical nanococrystal synthesis: A novel grinding approach. CrystEngComm. 2022;24(5):947-961. doi:10.1039/d1ce00407g

Vollath D. Agglomerates of nanoparticles. Beilstein Journal of Nanotechnology. 2020;11:854-857. doi:10.3762/BJNANO.11.70

Wahyuni R, Makmur I, Putri SA. Optimization of Ball Ratio in Planetary Ballmill in Nimodipine-poloxamer 188 Nanoparticle Formulation Process. International Journal of Pharmaceutical Sciences and Medicine. 2022;7(9):1-9. doi:10.47760/ijpsm.2022.v07i09.001

Putri T, Saputra IS, Saputro AH, Permana YN, Yulizar Y. Sodium Laureth Sulfate (SLS) Decorated α-PBO Nanocrystals : Optical, Structure, and Morphology Properties. Jurnal Sains Materi Indonesia. 2021;22(2):71-76.

Weldon DG, Hemminger WF, Flammersheim HJ. Differential Scanning Calorimetry. Vol 31. Springer-Verlag Berlin Heidelberg; 2014. doi:10.1007/978-3-662-06710-9

National Center for Biotechnology Information. Oxalic acid dihydrate. PubChem Compound Summary for CID 61373, Oxalic acid dihydrate.

Grobelny P, Mukherjee A, Desiraju GR. Polymorphs and hydrates of Etoricoxib, a selective COX-2 inhibitor. CrystEngComm. 2012;14(18):5785-5794. doi:10.1039/c2ce06604a

Kurniawan C, Waluyo TB, Sebayang P, Pusat ), Fisika P. Analisis Ukuran Partikel Menggunakan Free Software Image-J.; 2011. http://rsb.info.nih.gov/ij/.

Liu M, Hong C, Li G, Ma P, Xie Y. The generation of myricetin-nicotinamide nanococrystals by top down and bottom up technologies. Nanotechnology. 2016;27(39). doi:10.1088/0957-4484/27/39/395601

Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: Critical process parameters, particle fracturing and stabilization methods. Journal of Pharmacy and Pharmacology. 2010;62(11):1569-1579. doi:10.1111/j.2042-7158.2010.01022.x

Das A, Nayak AK, Mohanty B, Panda S. Solubility and Dissolution Enhancement of Etoricoxib by Solid Dispersion Technique Using Sugar Carriers. ISRN Pharm. 2011;2011:1-8. doi:10.5402/2011/819765

Md S, Alhakamy NA, Alharbi WS, et al. Development and evaluation of repurposed etoricoxib loaded nanoemulsion for improving anticancer activities against lung cancer cells. Int J Mol Sci. 2021;22(24). doi:10.3390/ijms222413284

Sugano K, Omori M, Watanabe T, Uekusa T, Oki J, Inoue D. Effects of coformer and polymer on particle surface solution- mediated phase transformation of cocrystals in aqueous media. Mol Pharm. 2020;17(10):3825-3836. doi:10.1021/acs.molpharmaceut.0c00587

Okumu A, DiMaso M, Löbenberg R. Computer simulations using GastroPlusTM to justify a biowaiver for etoricoxib solid oral drug products. European Journal of Pharmaceutics and Biopharmaceutics. 2009;72(1):91-98. doi:10.1016/j.ejpb.2008.10.019

Mitra A, Kesisoglou F, Dogterom P. Application of Absorption Modeling to Predict Bioequivalence Outcome of Two Batches of Etoricoxib Tablets. AAPS PharmSciTech. 2014;16(1):76-84. doi:10.1208/s12249-014-0194-8

Loh ZH, Samanta AK, Sia Heng PW. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci. 2014;10(4):255-274. doi:10.1016/j.ajps.2014.12.006

Unduhan

Diterbitkan

30-03-2024

Cara Mengutip

Susanto, S., Wikarsa, S., & Nugraha, Y. P. (2024). Kombinasi Teknik Pembentukan Kokristal dan Ball milling untuk Peningkatan Disolusi Etoricoxib. Jurnal Ilmiah Medicamento, 10(1), 22–34. https://doi.org/10.36733/medicamento.v10i1.7561

Terbitan

Bagian

Artikel Original