Karagenan Rumput Laut Merah Bali (Gracilaria sp.) sebagai Antibakteri terhadap Delapan Bakteri Patogen
DOI:
https://doi.org/10.36733/medicamento.v11i1.10349Kata Kunci:
bakteri, difusi agar sumuran, karagenan, polisakarida tersulfasi, rumput lautAbstrak
Peningkatan kasus infeksi dan resistensi setiap tahun, meningkatkan urgensi untuk mengeksplorasi agen antimikroba. Gracilaria sp. merupakan rumput laut merah yang dikenal secara luas sebagai salah satu penghasil metabolit aktif potensial yaitu polisakarida tersulfasi. Karagenan merupakan salah satu bentuk sulfated polisakarida yang memiliki aktivitas antimikroba. Penelitian ini dilakukan untuk menguji aktivitas antibakteri karagenan dari Gracilaria sp. terhadap beberapa bakteri patogen yaitu E. coli, S. aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, Pseudomona aeruginosa, Enterococcus faecalis, Streptococcus pyogenes, dan Salmonella typhi. Karagenan diekstraksi dari sampel Gracilaria sp. yang diperoleh dari daerah Denpasar Selatan (Bali) dengan menggunakan KOH. Pengujian aktivitas antibakteri karagenan dilakukan dengan metode difusi agar sumuran dengan media nutrien agar. Pengujian dilakukan pada konsentrasi 1 and 5 mg/mL (E. coli dan S. epidermidis), 20, 30, 40 mg/ml (S. aureus, S. pyrogenes, E. faecalis, dan S. typhi) 50, 75, and 100 mg/mL (P. aeruginosa dan K. pneumoniae). Inkubasi dilakukan selama 24 jam pada suhu ± 37℃. Data dianalisis secara statistik dengan One-Way ANOVA dan Kruskal Wallis dengan taraf kepercayaan 95%. Hasil penelitian menunjukkan karagenan yang diekstrak dari Gracilaria sp. menunjukkan aktivitas antibakteri yang signifikan terhadap beberapa bakteri patogen, terutama bakteri gram negatif. Aktivitas antibakteri yang dihasilkan pada penelitian ini sebanding dengan peningkatan konsentrasi, dimana aktivitas penghambatan yang dihasilkan semakin meningkat seiring dengan meningkatnya konsentrasi karagenan. Dapat disimpulkan bahwa karagenan memiliki potensi sebagai antibakteria.
Referensi
Novard MFA, Suharti N, Rasyid R. Gambaran Bakteri Penyebab Infeksi Pada Anak Berdasarkan Jenis Spesimen dan Pola Resistensinya di Laboratorium RSUP Dr. M. Djamil Padang Tahun 2014-2016. J Kesehat Andalas. 2019;8(2S):26. doi:10.25077/jka.v8i2s.955
Kurama GM, Maarisit W, Karundeng EZ, Potalangi NO. Uji Aktivitas Antibakteri Ekstrak Etanol Daun Benalu Langsat (Dendropthoe sp) Terhadap Bakteri Klebsiella Pneumoniae. Biofarmasetikal Trop. 2020;3(2):27-33. doi:10.55724/j.biofar.trop.v3i2.281
Andriani, I Gede Putu Wirawan, Suada IK. Aktivitas In Vitro Anti Jamur Ekstrak Bulung Sangu Gracilaria sp . terhadap Jamur Patogen Fusarium solani ( Mart ) Sacc . Cabai Rawit. J Agroekoteknologi Trop. 2021;10(2):141-152.
Alizadeh K. Development of Composite Sponge Scaffolds Based on Carrageenan (CRG) and Cerium Oxide Nanoparticles (CeO2 NPs) for Hemostatic Applications. Biomimetics. 2023;8(5):409. doi:10.3390/biomimetics8050409
Huat LL, Alali NB, Ling RLZ, Feng SS, Teo SS. Analysis of Antimicrobial Activity of Carrageenan Extracted From Kappaphycus Alvarezii. Appl Microbiol Theory & Technol. Published online 2023:61-72. doi:10.37256/amtt.4120232443
Yamashita S, Sugita-Konishi Y, Shimizu M. In Vitro Bacteriostatic Effects on Dietary Polysaccharides. Food Sci Technol Res. 2001;7(3):262-264. doi:10.3136/fstr.7.262
Azizi S, Mohamad R, Rahim RA, Mohammadinejad R, Ariff A. Hydrogel Beads Bio-Nanocomposite Based on Kappa-Carrageenan and Green Synthesized Silver Nanoparticles for Biomedical Applications. Int J Biol Macromol. 2017;104:423-431. doi:10.1016/j.ijbiomac.2017.06.010
Pramesti ES, Febriani NA, ‘Aisy RN, Salsabila S, Rachmawati VPN, Susilowati E. Synthesis of Silver/K-Caragenan Nanocomposites Assisted With Microwave Iradiation as a Potential Antibacterial Material. J Phys Conf Ser. 2022;2190(1):12004. doi:10.1088/1742-6596/2190/1/012004
Brychcy E, Malik M, Drozdzewski P, Król Z, Jarmoluk A. Physicochemical and antibacterial properties of carrageenan and gelatine hydrosols and hydrogels incorporated with acidic electrolyzedwater. Polymers (Basel). 2015;7(12):2638-2649. doi:10.3390/polym7121534
Sasadara MMV, Wirawan IGP, Jawi IM, Sritamin M, Dewi NNA, Adi AAAM. Anti-inflammatory Effect of Red Macroalgae Bulung Sangu (Gracilaria sp.) Extract in UVB-Irradiated Mice. Pakistan J Biol Sci. Published online 2020. doi:10.3923/pjbs.2021.80.89
Bouymajane A, Filali FR, Majdoub YOE, Ouadik M, Rahou A, Cavò E, Miceli N, Taviano MF, Mondello L, Cacciola F. Phenolic Compounds, Antioxidant and Antibacterial Activities of Extracts From Aerial Parts of Thymus Zygis Subsp. gracilis, Mentha Suaveolens and Sideritis Incana From Morocco. Chem Biodivers. 2022;19(3). doi:10.1002/cbdv.202101018
Nazir NS, Murtaza G, Hameed NA, Abbas G. Evaluation of Antibacterial Activity of Liverwort Species of Bagh Azad Jammu and Kashmir (Western Himalaya) Against Pathogenic Bacteria. GSC Biol Pharm Sci. 2023;22(2):166-172. doi:10.30574/gscbps.2023.22.2.0052
Abusetta A, Alumairi J, Alkaabi MY, Ajeil RA, Shkaidim AA, Akram D, Pajak J, Ghattas MA, Atatreh N, AlNeyadi SS. Design, Synthesis, &Amp;lt;i>in Vitro</I> Antibacterial Activity, and Docking Studies of New Rhodanine Derivatives. Open J Med Chem. 2020;10(01):15-34. doi:10.4236/ojmc.2020.101002
Wu M, Qi G, Liu X, Duan Y, Liu J, Bin L. Bio-Orthogonal AIEgen for Specific Discrimination and Elimination of Bacterial Pathogens via Metabolic Engineering. Chem Mater. 2019;32(2):858-865. doi:10.1021/acs.chemmater.9b04520
Cunha L, Grenha A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs. 2016;14(3). doi:10.3390/md14030042
El-Fawal G. Preparation, characterization and antibacterial activity of biodegradable films prepared from carrageenan. J Food Sci Technol. 2014;51(9):2234-2239. doi:10.1007/s13197-013-1255-9
Huang H, Wang Q, Ning Z, Ma Y, Huang Y, Wu Y, Yang Y, Xiao M, Ye J. Preparation, antibacterial activity, and structure-activity relationship of low molecular weight κ-carrageenan. Int J Biol Macromol. 2024;266:131021. doi:https://doi.org/10.1016/j.ijbiomac.2024.131021
Jones OG, Adamčík J, Handschin S, Bolisetty S, Mezzenga R. Fibrillation of Β-Lactoglobulin at Low pH in the Presence of a Complexing Anionic Polysaccharide. Langmuir. 2010;26(22):17449-17458. doi:10.1021/la1026619
Vinceković M, Bujan M, Sikirić MD. Nano- And Microcomplexes of Biopolymer Carrageenans and Dodecylammonium Chloride. J Polym Eng. 2011;31(2-3). doi:10.1515/polyeng.2011.028
Posokhov YO, Onishchenko A, Chumachenko T, Makieieva N, Kalashnyk-Vakulenko Y, Polikarpova H, Novikova V V, Prokopіuk V, Наконечна ОА, Chumachenko D, Tkachenko VL, Meniailov I, Tkachenko M, Tkachenko A. Semi-Refined Carrageenan Attenuates Lipopolysaccharide-Induced Reactive Oxygen Species Production in Peripheral Blood Mononuclear Cells and Cell Membrane Alterations in Leukocytes. J Pharm Nutr Sci. 2021;11:175-183. doi:10.29169/1927-5951.2021.11.20
Ficko-Blean E, Préchoux A, Thomas F, Rochat T, Larocque R, Zhu Y, Stam M, Genicot S, Jam M, Calteau A, Viart BT, Ropartz D, Pérez-Pascual D, Correc G, Matard-Mann M, Stubbs KA, Rogniaux H, Jeudy A, Barbeyron T, Médigue C, Czjzek M, Vallenet D, McBride MJ, Duchaud É, Michel G. Carrageenan Catabolism Is Encoded by a Complex Regulon in Marine Heterotrophic Bacteria. Nat Commun. 2017;8(1). doi:10.1038/s41467-017-01832-6
Fukada M. Development of Bitter-Taste Masked Instant Jelly Formulations of Diphenhydramine Hydrochloride With Easy-to-Consume Granules. Chem Pharm Bull. 2023;71(8):670-674. doi:10.1248/cpb.c23-00247
Koralegedara ID, Hettiarachchi CA, Wimalasiri KMS. Synthesis of Nano-Scale Biopolymer Particles From Legume Protein Isolates and Carrageenan. Food Technol Biotechnol. 2020;58(2):214-222. doi:10.17113/ftb.58.02.20.6279
Ellis A, Mills T, Norton IT, Norton-Welch AB. The Hydrophobic Modification of Kappa Carrageenan Microgel Particles for the Stabilisation of Foams. J Colloid Interface Sci. 2019;538:165-173. doi:10.1016/j.jcis.2018.11.091
Wang F, Yao Z, Wu H, Zhang S, Zhu N, Gai X. Antibacterial activities of kappa-carrageenan oligosaccharides. Appl Mech Mater. 2012;108:194-199. doi:10.4028/www.scientific.net/AMM.108.194
Prasedya ES, Miyake M, Kobayashi D, Hazama A. Carrageenan Delays Cell Cycle Progression in Human Cancer Cells in Vitro Demonstrated by FUCCI Imaging. BMC Complement Altern Med. 2016;16(1). doi:10.1186/s12906-016-1199-5
Cotas J, Marques V, Afonso MB, Rodrigues CMP, Pereira L. Antitumour Potential of Gigartina Pistillata Carrageenans Against Colorectal Cancer Stem Cell-Enriched Tumourspheres. Mar Drugs. 2020;18(1):50. doi:10.3390/md18010050
Simona J, Dani D, Petr S, Marcela N, Jakub T, Bohuslava T. Edible Films from Carrageenan/Orange Essential Oil/Trehalose—Structure, Optical Properties, and Antimicrobial Activity. Polymers (Basel). 2021;13(3). doi:10.3390/polym13030332
Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Hosseini SM, Khaksar R. Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydr Polym. 2014;101:582-591. doi:https://doi.org/10.1016/j.carbpol.2013.09.070
Ali AJ, Abdulla HI, Al-Nimer MS. The Pharmacological Effects of Kappa Carrageenan on Different Human Cell Lines and Genomic DNA: An in Vitro Study. Iraqi J Pharm Sci ( P-Issn 1683 - 3597 E-Issn 2521 - 3512). 2021;30(1):189-195. doi:10.31351/vol30iss1pp189-195

Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Maria Malida Vernandes Sasadara, Erna Cahyaningsih, Ni Luh Kade Arman Anita Dewi, Putu Era Sandhi Kusuma Yuda, I Gusti Agung Ayu Kusuma Wardani, Debby Juliadi, Ni Kadek Dila Pratiwi Putri, Ni Kadek Nisa Leoni Putri, I Wayan Agus Darmawan, Ni Kadek Pradnya Yanti

Artikel ini berlisensi Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.