Combination of Cocrystal and Ball Milling Techniques to Improve Etoricoxib Dissolution

Authors

DOI:

https://doi.org/10.36733/medicamento.v10i1.7561

Keywords:

ball milling, cocrystal, etoricoxib, oxalic acid, Tween 80

Abstract

Etoricoxib (ETX) is a selective COX-2 anti-inflammatory drug classified in BCS class II. This study aims to enhance the dissolution rate of etoricoxib through a combination of co-crystal formation and ball milling conducted in-situ and ex-situ. Optimization was done by varying milling times and types of stabilizers, including Tween 80 (ETX-OXA-BM-T), Poloxamer 188 (ETX-OXA-BM-P), and a combination of Tween 80-sodium lauryl sulfate (SLS) (ETX-OXA-BM-T-S). In-situ experiments yielded a very low yield (<10%) and failed to produce co-crystals, thus deeming them unsuitable for continuation. Meanwhile, the ex-situ process showed more potential, leading to further evaluation using Differential Scanning Calorimetry (DSC), Powder X-Ray Diffractometry (PXRD), and Scanning Electron Microscope (SEM). DSC analysis showed endothermic peaks at 130°C for ETX and around 179 - 180°C for ETX-OXA and its derivatives. PXRD diffractograms for ETX-OXA and its derivatives exhibited similar peaks, differing from ETX. SEM analysis indicated that ETX-OXA-BM-T with 60 minutes of milling resulted in nanometer-sized particles, while the use of Poloxamer 188 and the combination of Tween 80-SLS produced particle sizes > 1 µm. ETX-OXA-BM-T showed the highest increase in solubility in all media. The dissolution results of ETX-OXA-BM-T showed improvement in phosphate buffer pH 6.8, while no significant differences were observed in pH 1.2 and 4.5 buffers. This study demonstrates that the combination of co-crystal formation and ex-situ ball milling is a potential approach to enhancing the dissolution rate of etoricoxib.

Author Biographies

Sharon Susanto, Institut Teknologi Bandung

School of Pharmacy

Saleh Wikarsa, Institut Teknologi Bandung

School of Pharmacy

Yuda Prasetya Nugraha, Institut Teknologi Bandung

School of Pharmacy

References

Arfan AR, Ilmiawati A, Sugita P. Optimization and synthesis of etoricoxib-loaded low molecular weight chitosan nanoparticles. Ciencia Rural. 2022;52(11). doi:10.1590/0103-8478cr20210656

Malviya R, Sharma PK, Dubey SK. Efficiency of self‐assembled etoricoxib containing polyelectrolyte complex stabilized cubic nanoparticles against human cancer cells. Precision Medical Sciences. 2020;9(1):9-22. doi:10.1002/prm2.12004

Dave V, Srivastava P, Tak K, Sharma S. PEG-PLGA- hybrid nanoparticles loaded with etoricoxib–phospholipid complex for effective treatment of inflammation in rat model. J Microencapsul. 2019;36(3):236-249. doi:10.1080/02652048.2019.1617362

Wang Y, Wang L, Zhang F, et al. Structure analysis and insight into hydrogen bond and van der waals interactions of etoricoxib cocrystals and cocrystal solvate. J Mol Struct. 2022;1258. doi:10.1016/j.molstruc.2022.132665

Sapkal SB, Adhao VS, Thenge RR, Darakhe RA, Shinde SA, Shrikhande VN. Formulation and characterization of solid dispersions of etoricoxib using natural polymers. Turk J Pharm Sci. 2020;17(1):7-19. doi:10.4274/tjps.galenos.2018.04880

Banerjee M, Nimkar K, Naik S, Patravale V. Unlocking the potential of drug-drug cocrystals – A comprehensive review. Journal of Controlled Release. 2022;348:456-469. doi:10.1016/j.jconrel.2022.06.003

Yan Y, Wang L, Si Z, Zhang X, Yuan W. A novel cocrystal of metformin hydrochloride with citric acid: Systematic synthesis and computational simulation. European Journal of Pharmaceutics and Biopharmaceutics. 2022;179:37-46. doi:10.1016/j.ejpb.2022.08.013

Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B. 2021;11(8):2537-2564. doi:10.1016/j.apsb.2021.03.030

Panzade P, Shendarkar G, Kulkarni D, Shelke S. Solid state characterization and dissolution enhancement of nevirapine cocrystals. Adv Pharm Bull. 2021;11(4):772-776. doi:10.34172/APB.2021.087

Liu M, Hong C, Li G, Ma P, Xie Y. The generation of myricetin-nicotinamide nanococrystals by top down and bottom up technologies. Nanotechnology. 2016;27(39). doi:10.1088/0957-4484/27/39/395601

Shen D, Jin T, Xiao Y, Zhu X, Hua Y. Preparation of pazopanib-fumarate disodium glycyrrhizinate nanocrystalline micelles by liquid-assisted ball milling. European Journal of Pharmaceutical Sciences. 2023;188. doi:10.1016/j.ejps.2023.106530

Martínez LM, Cruz-Angeles J, Vázquez-Dávila M, et al. Mechanical Activation by Ball Milling as a Strategy to Prepare Highly Soluble Pharmaceutical Formulations in the Form of Co-Amorphous, Co-Crystals, or Polymorphs. Pharmaceutics. 2022;14(10). doi:10.3390/pharmaceutics14102003

Wang Y, Wang L, Zhang F, et al. Structure analysis and insight into hydrogen bond and van der waals interactions of etoricoxib cocrystals and cocrystal solvate. J Mol Struct. 2022;1258:132665. doi:10.1016/j.molstruc.2022.132665

Nugrahani I, Auli WN. Diclofenac-proline nano-co-crystal development, characterization, in vitro dissolution and diffusion study. Heliyon. 2020;6(9). doi:10.1016/j.heliyon.2020.e04864

Missouri State University and Ozarks Environmental and Water Resources Institute (OEWRI). Standard Operating Procedure for: LS 13 320 Laser Diffraction Particle Size Analyzer Operation.; 2008.

Unique IGNP, Nurono S, Nugraha YP. Modifikasi Sifat Fisikokimia Telmisartan melalui Pembentukan Garam. Bandung Institute of Technology; 2023.

Singh S, Mishra A, Verma A, Ghosh AK, Mishra AK. A simple ultraviolet spectrophotometric method for the determination of etoricoxib in dosage formulations. J Adv Pharm Technol Res. 2012;3(4):237-240. doi:10.4103/2231-4040.104715

Huang Z, Staufenbiel S, Bodmeier R. Combination of co-crystal and nanocrystal techniques to improve the solubility and dissolution rate of poorly soluble drugs. Pharm Res. 2022;39(5):949-961. doi:10.1007/s11095-022-03243-9

Shan Chow P, Lau G, Kiong Ng W, Vangala VR. Stability of Pharmaceutical Cocrystal During Milling: A Case Study of 1:1 Caffeine-Glutaric Acid 2. Crystal Growth& Design. 2017;17(8):4064-4071.

Santos JAV, Baptista JA, Santos IC, et al. Pharmaceutical nanococrystal synthesis: A novel grinding approach. CrystEngComm. 2022;24(5):947-961. doi:10.1039/d1ce00407g

Vollath D. Agglomerates of nanoparticles. Beilstein Journal of Nanotechnology. 2020;11:854-857. doi:10.3762/BJNANO.11.70

Wahyuni R, Makmur I, Putri SA. Optimization of Ball Ratio in Planetary Ballmill in Nimodipine-poloxamer 188 Nanoparticle Formulation Process. International Journal of Pharmaceutical Sciences and Medicine. 2022;7(9):1-9. doi:10.47760/ijpsm.2022.v07i09.001

Putri T, Saputra IS, Saputro AH, Permana YN, Yulizar Y. Sodium Laureth Sulfate (SLS) Decorated α-PBO Nanocrystals : Optical, Structure, and Morphology Properties. Jurnal Sains Materi Indonesia. 2021;22(2):71-76.

Weldon DG, Hemminger WF, Flammersheim HJ. Differential Scanning Calorimetry. Vol 31. Springer-Verlag Berlin Heidelberg; 2014. doi:10.1007/978-3-662-06710-9

National Center for Biotechnology Information. Oxalic acid dihydrate. PubChem Compound Summary for CID 61373, Oxalic acid dihydrate.

Grobelny P, Mukherjee A, Desiraju GR. Polymorphs and hydrates of Etoricoxib, a selective COX-2 inhibitor. CrystEngComm. 2012;14(18):5785-5794. doi:10.1039/c2ce06604a

Kurniawan C, Waluyo TB, Sebayang P, Pusat ), Fisika P. Analisis Ukuran Partikel Menggunakan Free Software Image-J.; 2011. http://rsb.info.nih.gov/ij/.

Liu M, Hong C, Li G, Ma P, Xie Y. The generation of myricetin-nicotinamide nanococrystals by top down and bottom up technologies. Nanotechnology. 2016;27(39). doi:10.1088/0957-4484/27/39/395601

Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: Critical process parameters, particle fracturing and stabilization methods. Journal of Pharmacy and Pharmacology. 2010;62(11):1569-1579. doi:10.1111/j.2042-7158.2010.01022.x

Das A, Nayak AK, Mohanty B, Panda S. Solubility and Dissolution Enhancement of Etoricoxib by Solid Dispersion Technique Using Sugar Carriers. ISRN Pharm. 2011;2011:1-8. doi:10.5402/2011/819765

Md S, Alhakamy NA, Alharbi WS, et al. Development and evaluation of repurposed etoricoxib loaded nanoemulsion for improving anticancer activities against lung cancer cells. Int J Mol Sci. 2021;22(24). doi:10.3390/ijms222413284

Sugano K, Omori M, Watanabe T, Uekusa T, Oki J, Inoue D. Effects of coformer and polymer on particle surface solution- mediated phase transformation of cocrystals in aqueous media. Mol Pharm. 2020;17(10):3825-3836. doi:10.1021/acs.molpharmaceut.0c00587

Okumu A, DiMaso M, Löbenberg R. Computer simulations using GastroPlusTM to justify a biowaiver for etoricoxib solid oral drug products. European Journal of Pharmaceutics and Biopharmaceutics. 2009;72(1):91-98. doi:10.1016/j.ejpb.2008.10.019

Mitra A, Kesisoglou F, Dogterom P. Application of Absorption Modeling to Predict Bioequivalence Outcome of Two Batches of Etoricoxib Tablets. AAPS PharmSciTech. 2014;16(1):76-84. doi:10.1208/s12249-014-0194-8

Loh ZH, Samanta AK, Sia Heng PW. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci. 2014;10(4):255-274. doi:10.1016/j.ajps.2014.12.006

Published

2024-03-30

How to Cite

Susanto, S., Wikarsa, S., & Nugraha, Y. P. (2024). Combination of Cocrystal and Ball Milling Techniques to Improve Etoricoxib Dissolution . Jurnal Ilmiah Medicamento, 10(1), 22–34. https://doi.org/10.36733/medicamento.v10i1.7561