Interaction Phloroglucinol as inflammation therapy through Cyclooxygenase-2 (COX-2) gene inhibition


  • Yohanes Bare Universitas Nusa Nipa Indonesia



COX-2, inflammation, natural compound, Phaeophyta, Phloroglucinol


Exploration of natural compounds is one of the projects in the context of curving disease, one of which is inflammatory therapy in the body, one of the natural ingredients used is Phloroglucinol which has anti-inflammatory properties but there is no information on molecular studies related to its activity. The purpose of this study was to explore the potential of Phloroglucinol as an anti-inflammatory mechanism. Phloroglucinol compound (CID 359) was downloaded from the PubChem Protein COX-2 database (PDB ID 6cox) downloaded from the Protein Data Bank database. The compound Phloroglucinol interacted with the Molegro virtual Docker 5 program with Grid docking X 66,44; Y 27.44; Z 107.23. The docking results were analyzed using Discovery Studio software ver 21.1.1. The results showed that Phloroglucinol binds to five COX-2 amino acid residues and may inhibit COX-2 performance and can be a strong candidate for inflammatory therapy when inflammation occurs. in the human body. The conclusion of this study is that Phloroglucinol compounds have the potential in inhibiting COX-2 (inflammatory mediators).


Al-Saeed, A. (2011). Gastrointestinal and Cardiovascular Risk of NonsteroidalAnti-inflammatory Drugs. Oman Medical Journal, 26(6), 385–391.

Bare, Y. (2021). ANALISIS SENYAWA FITOSTEROL Cymbopogon citratus dan Curcuma longa SEBAGAI ANTIALZHEIMER. Biopendix: Jurnal Biologi, Pendidikan dan terapan, 7(2), 53–159.

Bare, Y., Indahsari, L. I. N., Sari, D. R. T., & Watuguly, T. (2021). In Silico Study: Potential Prediction of Curcuma longa And Cymbopogon citratus Essential Oil As Lipoxygenase Inhibitor Yohanes. JSMARTech, 02(02), 76–80. In

Bare, Y., Marhendra, A., Sasase, T., & Fatchiyah, F. (2018). Differential Expression of IL-10 Gene and Protein in Target Tissues of Rattus Norvegicus Strain Wistar Model Type 2 Diabetes Mellitus (T2DM). Acta Informatica Medica, 26(2), 87.

Bare, Y., S, M., Putra, S. H. J., L, M. R. W. G., & Sari, D. R. T. (2020). In-silico Approach for The Prediction of Chlorogenic Acid as PPAR-γ Activator. Biota, 13(1).

Bare, Y., Sari, D. R., Rachmad, Y. T., Tiring, S. S. N. D., Rophi, A. H., & Nugraha, F. A. D. (2019). Prediction Potential Chlorogenic Acid As Inhibitor Ace (In Silico Study). Bioscience, 3(2), 197.

Bare, Y., & Sari, D. R. T. (2021). Pengembangan Lembar Kerja Mahasiswa (LKM) Berbasis Inkuiri Pada Materi Interaksi Molekuler. BioEdUIN, 11(1), 8.

Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D’Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G. E., Berman, A. E., Bilan, M. I., Usov, A. I., Ustyuzhanina, N. E., Grachev, A. A., Sanderson, C. J., Kelly, M., Rabinovich, G. A., Iacobelli, S., Nifantiev, N. E., & and on behalf of the Consorzio Interuniversitario Nazionale per la Bio-Oncologia (CINBO), I. (2007). A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 17(5), 541–552.

Dürig, J., Bruhn, T., Zurborn, K.-H., Gutensohn, K., Bruhn, H. D., & Béress, L. (1997). ANTICOAGULANT FUCOIDAN FRACTIONS FROM FUCUS VESICULOSUS INDUCE PLATELET ACTIVATION IN VITRO. Thrombosis Research, 85(6), 479–491.

El Gamal, A. A. (2010). Biological importance of marine algae. Saudi Pharmaceutical Journal, 18(1), 1–25.


Elshamy, A. I., Mohamed, T. A., Essa, A. F., Abd-Elgawad, A. M., Alqahtani, A. S., Shahat, A. A., Yoneyama, T., Farrag, A. R. H., Noji, M., El-Seedi, H. R., Umeyama, A., Paré, P. W., & Hegazy, M. E. F. (2019). Recent advances in Kaempferia phytochemistry and biological activity: A comprehensive review. In Nutrients (Vol. 11, Issue 10).

Freshwater, J. D., Svensson, C. I., Malmberg, A. B., & Calcutt, N. A. (2002). Elevated Spinal Cyclooxygenase and Prostaglandin Release During Hyperalgesia in Diabetic Rats. Diabetes, 51(7), 2249–2255.

Galasso, C., Corinaldesi, C., & Sansone, C. (2017). Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants, 6(4).

Generalić Mekinić, I., Skroza, D., Šimat, V., Hamed, I., Čagalj, M., & Popović Perković, Z. (2019). Phenolic Content of Brown Algae (Pheophyceae) Species: Extraction, Identification, and Quantification. Biomolecules, 9(6), 244.

Hakim, M. M., & Patel, I. C. (2020). A review on phytoconstituents of marine brown algae. Future Journal of Pharmaceutical Sciences, 6(1).

Kang, N. J., Lee, K. W., Shin, B. J., Jung, S. K., Hwang, M. K., Bode, A. M., Heo, Y.-S., Lee, H. J., & Dong, Z. (2008). Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression. Carcinogenesis, 30(2), 321–330.

Kellogg, A., Pop-Busui, R., & Cheng, H. T. (2008). Cyclooxygenase-2 Pathway as a Potential Therapeutic Target in Diabetic Peripheral Neuropathy. Current Drug Targets, 9(1), 68–76.

Kim, K. C., Piao, M. J., Zheng, J., Yao, C. W., Cha, J. W., Kumara, M. H. S. R., Han, X., Kang, H. K., Lee, N. H., & Hyun, J. W. (2014). Fucodiphlorethol G Purified from Ecklonia cava Suppresses Ultraviolet B Radiation-Induced Oxidative Stress and Cellular Damage. Biomolecules & Therapeutics, 22(4), 301–307.

Knights, K. M., Mangoni, A. A., & Miners, J. O. (2010). Defining the COX inhibitor selectivity of NSAIDs: Implications for understanding toxicity. Expert Review of Clinical Pharmacology, 3(6), 769–776.

Krisnamurti, G. C., Sari, D. R. T., & Bare, Y. (2021). Capsaicinoids from Capsicum annuum as an Alternative FabH Inhibitor of Mycobacterium Tuberculosis: In Silico Study. Bahan Alam, COX-2, Inflamasi, Phaeophyta, Phloroglucinol, 25(4), 195–202.

Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. Bin. (2019). Bioactive compounds and bioactivities of ginger (zingiber officinale roscoe). Foods, 8(6), 1–21.

Pradhan, B., Nayak, R., Patra, S., Jit, B. P., Ragusa, A., & Jena, M. (2020). Bioactive Metabolites from Marine Algae as Potent Pharmacophores against Oxidative Stress-Associated Human Diseases: A Comprehensive Review. Molecules (Basel, Switzerland), 26(1).

Rophi, A. H., Bare, Y., & Sari, D. R. T. (2021). The Potential of Acetylfuran and Furfural from Tamarindus indica as Lipoxygenase Inhibitor: In Silico Study. JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA, 8(2), 139.

S, M., Bare, Y., Helvina, M., Pili, A. P., & Krisnamurti, G. C. (2020). In silico Study: Potential activity of 10-shogaol in Zingiber officinale through ACE gene. Spizaetus: Jurnal Biologi Dan Pendidikan Biologi, October, 12–18.

Samsi, A. N., & Rusmidin. (2021). Review: Metabolit Sekunder pada Algae. Bioma, 3(1), 6.

Santoso, B., & Atmajaya, T. E. (2016). KAJIAN DOCKING SENYAWA 4-[(Z)-N-(4-hidroksifenil)carboksimidoil]-2- metoksifenol SEBAGAI INHIBITOR COX-2 MENGGUNAKAN PLANTS. 8.

Sari, D. R. T., & Bare, Y. (2021). Kajian In Silico Aktivitas Antioksidan Senyawa Bioaktif Dalam Minyak Serai (Cymbopogon Citratus). Al-Kimia, 9(1), 61–69.

Tiring, S. S. N. D., Bare, Y., S;, M., Maulidi, A., & Nugraha, F. A. D. (2019). Studi In Silico: Prediksi Potensi 6-shogaol dalam Zingiber officinale sebagai Inhibitor c-Jun N-terminal kinase. Al-Kimia, 7(2), 147–153.



How to Cite

Bare, Y. (2022). Interaction Phloroglucinol as inflammation therapy through Cyclooxygenase-2 (COX-2) gene inhibition . Jurnal Ilmiah Medicamento, 8(1), 14–21.



Original Articles

Most read articles by the same author(s)