Autentikasi G.dulcis terhadap Adulterasi G.Mangostana dengan Metode Spektrofotometri Kombinasi Kemometrik
DOI:
https://doi.org/10.36733/medicamento.v10i1.4856Kata Kunci:
autentikasi, G. dulcis, G.mangostanaAbstrak
Garcinia adalah genus yang terdiri dari berbagai macam spesies dengan aktivitas beragam. Dua spesies garcinia yang telah diteliti adalah G. dulcis dan G. mangostana. Ekstrak buah bagian pericarp kedua spesies tersebut memiliki aktivitas sebagai antioksidan, antibakteri, anti hiperlipidemia, dan antidiabetes. Namun, aktivitas kedua spesies ini bervariasi, sehingga diperlukan autentikasi salah satu spesies untuk menghindari terjadinya adulterasi (pencampuran). Penelitian ini bertujuan untuk mengautentifikasi G. dulcis dalam campuran G. dulcis dan G. mangostana. Penelitian ini menggunakan metode spektrofotometri kombinasi dengan kemometrik. Peralatan yang digunakan adalah spektrofotometri UV-vis, dan analisis data menggunakan PLSR. Hasil dari penelitian pada panjang gelombang daerah 246,77-224,46 nm model normal RMSEC adalah 3,75 dan R2 0,99 dan panjang gelombang 300,2- 256,56 nm derivatisasi kedua RMSEC adalah 3,21 dan R2 0,9956. Berdasarkan data yang diperoleh dapat disimpulkan model derivatisasi ke-2 pada panjang gelombang 300,2-256,56 nm merupakan model terbaik untuk autentikasi G.dulcis terhadap G.mangostana karena memiliki RMSE terendah dan R2 tertinggi secara kualitatif namun belum mampu mengkuantifikasi perbedaannya.
Referensi
Khamthong N, Hutadilok-Towatana N. Phytoconstituents and Biological Activities of Garcinia dulcis (Clusiaceae): A Review. Natural product communications. 2017;12(3):453-460.
Aizat WM, Ahmad-Hashim FH, Syed Jaafar SN. Valorization of mangosteen, “The Queen of Fruits,” and new advances in postharvest and in food and engineering applications: A review. Journal of Advanced Research. 2019;20:61-70. doi:https://doi.org/10.1016/j.jare.2019.05.005
Muhamad Adyab NS, Rahmat A, Abdul Kadir NAA, Jaafar H, Shukri R, Ramli NS. Mangosteen (Garcinia mangostana) flesh supplementation attenuates biochemical and morphological changes in the liver and kidney of high fat diet-induced obese rats. BMC complementary and alternative medicine. 2019;19(1):344. doi:10.1186/s12906-019-2764-5
Ovalle-Magallanes B, Eugenio-Pérez D, Pedraza-Chaverri J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food and Chemical Toxicology. 2017;109:102-122.
Yang R, Li P, Li N, et al. Xanthones from the Pericarp of Garcinia mangostana. Molecules. 2017;22(5). doi:10.3390/molecules22050683
Oetari RA, Hasriyani H, Prayitno A, Sahidin S. Gartanin Compounds from Extract Ethanol Pericarp Mangosteen (Garcinia mangostana Linn.). Open access Macedonian journal of medical sciences. 2019;7(22):3891-3895. doi:10.3889/oamjms.2019.527
Masullo M, Menegazzi M, Di Micco S, et al. Direct interaction of garcinol and related polyisoprenylated benzophenones of Garcinia cambogia fruits with the transcription factor STAT-1 as a likely mechanism of their inhibitory effect on cytokine signaling pathways. Journal of natural products. 2014;77(3):543-549.
Saraswathy SUP, Lalitha LCP, Rahim S, et al. A Review on Synthetic and Pharmacological Potential of Compounds Isolated from Garcinia mangostana Linn. Phytomedicine Plus. 2022;2(2):100253. doi:https://doi.org/10.1016/j.phyplu.2022.100253
Hou C, Chen L, Yang L, Ji X. An insight into anti-inflammatory effects of natural polysaccharides. International journal of biological macromolecules. 2020;153:248-255. doi:10.1016/j.ijbiomac.2020.02.315
Zhang S, Li Z, Wang X, et al. Isolation, structural elucidation, and immunoregulation properties of an arabinofuranan from the rinds of Garcinia mangostana. Carbohydrate polymers. 2020;246:116567.
Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: promising natural compounds against viral infections. Archives of Virology. 2017;162(9):2539-2551. doi:10.1007/s00705-017-3417-y
Tran TH, Le HT, Nguyen HM, et al. Garcinoxanthones SV, new xanthone derivatives from the pericarps of Garcinia mangostana together with their cytotoxic and antioxidant activities. Fitoterapia. 2021;151:104880.
Xie JY, Tan J. Front-face synchronous fluorescence spectroscopy: a rapid and non-destructive authentication method for Arabica coffee adulterated with maize and soybean flours. Journal fur Verbraucherschutz und Lebensmittelsicherheit = Journal of consumer protection and food safety. 2022;17(3):209-219. doi:10.1007/s00003-022-01396-8
Menevşeoğlu A, Aykas D, Adal E. Non-targeted approach to detect green pea and peanut adulteration in pistachio by using portable FT-IR, and UV–Vis spectroscopy. Journal of Food Measurement and Characterization. 2021;15. doi:10.1007/s11694-020-00710-y
Elbadawy M. Ultrasonication Extraction - HPLC-VIS Fluorescence Method Validation for Trace Analysis of Oil and Grease in Water. Journal of Environmental Analytical Chemistry. 2017;4:193. doi:10.4172/2380-2391.1000193
Barbosa-García O, Ramos-Ortíz G, Maldonado JL, et al. UV–vis absorption spectroscopy and multivariate analysis as a method to discriminate tequila. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2007;66(1):129-134. doi:https://doi.org/10.1016/j.saa.2006.02.033
Maggio R, Kaufman T, Del Carlo M, et al. Monitoring of fatty acid composition in virgin olive oil by Fourier transformed infrared spectroscopy with partial least squares. Food Chemistry. Published online April 2013:1549-1554. doi:10.1016/j.foodchem.2008.11.029
Brereton RG. Introduction to multivariate calibration in analytical chemistry. Analyst. 2000;125(11):2125-2154. doi:10.1039/B003805I
BPOM RI. Petunjuk Operasional Penerapan Pedoman Cara Pembuatan Obat Yang Baik 2012. Badan Pengawas Obat dan Makanan, Jakarta; 2013.
Xu Y, Zhong P, Jiang A, et al. Raman spectroscopy coupled with chemometrics for food authentication: A review. TrAC Trends in Analytical Chemistry. 2020;131:116017. doi:https://doi.org/10.1016/j.trac.2020.116017
Rohman A, Riyanto S, Sasi AM, Yusof FM. The use of FTIR spectroscopy in combination with chemometrics for the authentication of red fruit (Pandanus conoideus Lam) oil from sunflower and palm oils. Food Bioscience. 2018;7:64-70. doi:https://doi.org/10.1016/j.fbio.2014.05.007
Singh S, Shakeel H, Sharma R. Overview of chemometrics in forensic toxicology. Egyptian Journal of Forensic Sciences. 2023;13(1):53. doi:10.1186/s41935-023-00371-0
Rohman A, Ikhtiarini A, Setyaningsih W, et al. The Use of Chemometrics for Classification of Sidaguri (Sida rhombifolia) Based on FTIR Spectra and Antiradical Activities. Indonesian Journal of Chemistry. 2021;21:1568. doi:10.22146/ijc.64360
Núñez N, Collado X, Martínez C, Saurina J, Núñez O. Authentication of the Origin, Variety and Roasting Degree of Coffee Samples by Non-Targeted HPLC-UV Fingerprinting and Chemometrics. Application to the Detection and Quantitation of Adulterated Coffee Samples. Foods (Basel, Switzerland). 2020;9(3). doi:10.3390/foods9030378
Syifa F, Irnawati I, Budi Riyanta A, Rohman A. Authentication analysis of snakehead fish oil using combination of ftir spectra and chemometrics. International Journal of Pharmaceutical Research. 2020;13:160-167. doi:10.31838/ijpr/2021.13.01.025
Putri AR, Rohman A, Riyanto S. Comparative Study of Fatty Acid Profiles In Patin (Pangasius micronemus) and Gabus (Channa striata) Fish Oil and Its Authentication Using FTIR Spectroscopy Combined with Chemometrics. International Journal of Applied Pharmaceutics. 2019;11(6):55-60. doi:10.22159/ijap.2019v11i6.34921
Irnawati I, Riyanto S, Rohman A. Adulteration of Gabus (Channa striata) fish oil with corn oil and palm oil: the use of FTIR spectra and chemometrics. Food Research. 2021;5:184-190. doi:10.26656/fr.2017.5(2).368
Irnawati I, Windarsih A, Indrianingsih A, et al. Rapid detection of tuna fish oil adulteration using FTIR-ATR spectroscopy and chemometrics for halal authentication. Journal of Applied Pharmaceutical Science. Published online January 2023. doi:10.7324/JAPS.2023.120270
Huo F, Zhang XH, Chen Z, et al. Novel nonlinear optical push–pull fluorene dyes chromophore as promising materials for telecommunications. Journal of Materials Science Materials in Electronics. 2019;30. doi:10.1007/s10854-019-01576-7
Gran-Scheuch A, Fuentes E, Bravo DM, Jiménez JC, Pérez-Donoso JM. Isolation and Characterization of Phenanthrene Degrading Bacteria from Diesel Fuel-Contaminated Antarctic Soils. Frontiers in microbiology. 2017;8:1634. doi:10.3389/fmicb.2017.01634
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Jurnal Ilmiah Medicamento
Artikel ini berlisensi Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Pemegang hak cipta atas karya adalah Jurnal Ilmiah Medicamento.
Jurnal Ilmiah Medicamento berlisensi Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Anda bebas untuk:
- Bagikan — salin dan distribusikan ulang materi dalam media atau format apa pun
- Pemberi lisensi tidak dapat mencabut kebebasan ini sepanjang Anda mengikuti persyaratan lisensi.
Di bawah ketentuan berikut:
- Atribusi — Anda harus memberikan kredit yang sesuai, memberikan tautan ke lisensi, dan menunjukkan jika ada perubahan. Anda dapat melakukannya dengan cara yang wajar, tetapi tidak dengan cara apa pun yang menunjukkan bahwa pemberi lisensi mendukung Anda atau penggunaan Anda.
- NonKomersial — Anda tidak boleh menggunakan materi untuk tujuan komersial.
- NoDerivatives — Jika Anda me-remix, mengubah, atau membangun materi, Anda tidak boleh mendistribusikan materi yang dimodifikasi.
- Tidak ada batasan tambahan — Anda tidak boleh menerapkan persyaratan hukum atau tindakan teknologi yang secara hukum membatasi orang lain untuk melakukan apa pun yang diizinkan oleh lisensi.