Metode Analisis dalam Mengungkap Komposisi Perisa Buah E-Liquid Rokok Elektrik: Sebuah Tinjauan
DOI:
https://doi.org/10.36733/medicamento.v11i1.11099Kata Kunci:
Rokok elektrik, Cairan elektronik, Komposisi perisa, KromatografiAbstrak
Pemakaian rokok elektrik kini semakin meningkat, salah satunya disebabkan perisa e-liquid rasa buah-buahan. Senyawa kimia penyusun perisa tersebut berperan dalam memberikan karakteristik rasa, namun jika terhirup berpotensi memberikan efek negatif terhadap kesehatan. Pemahaman mengenai senyawa kimia apa saja yang terdapat pada perisa e-liquid sangat penting untuk mengetahui efek toksisitas rokok elektrik. Artikel ini bertujuan untuk meninjau metode analisis yang telah dilakukan oleh beberapa literatur sebelumnya dalam mengidentifikasi senyawa perisa e-liquid. Literatur dikumpulkan melalui pencarian di database ilmiah terkemuka, termasuk ScienceDirect, Scopus, Web of Science, PubMed, dan Google Scholar, dengan menggunakan kata kunci yang relevan. Dari pencarian awal, ditemukan 35 artikel yang relevan, kemudian diseleksi berdasarkan kriteria inklusi dan eksklusi, sehingga diperoleh 10 artikel untuk dianalisis lebih lanjut. Literatur yang dipilih yakni penelitian dengan fokus pada metode kromatrografi, khususnya Kromatografi Gas (GC) dan Kromatografi Cair (LC). Pengembangan lebih lanjut, seperti kombinasi GC dengan Spektrometri Massa (MS) dan Spektrometri Mobilitas Ion (IMS), serta LC dengan MS/MS dan Ionisasi Elektrospray (ESI), terbukti meningkatkan sensitivitas dan selektivitas analisis. Temuan ini menekankan pentingnya memilih metode analisis yang tepat terhadap senyawa penyusun perisa buah. Hasil analisis juga membahas kelebihan dan tantangan yang ada, sehingga dapat memberikan panduan dalam memilih metode analisis yang tepat untuk mendorong pengembangan standar keamanan yang lebih baik.
Referensi
Yoong SL, Hall A, Leonard A, et al. Prevalence of electronic nicotine delivery systems and electronic non-nicotine delivery systems in children and adolescents: a systematic review and meta-analysis. Lancet Public Health. 2021;6(9):e661-e673. doi:10.1016/S2468-2667(21)00106-7
Ceasar RC, Braymiller JL, Kechter A, et al. Perceiving E-Cigarettes as Safe and Safer Alternative to Cigarettes Among Young Adults. Substance Use & Addiction Journal. 2024;45(2):181-190. doi:10.1177/29767342231218533
Marques P, Piqueras L, Sanz MJ. An updated overview of e-cigarette impact on human health. Respir Res. 2021;22(1). doi:10.1186/s12931-021-01737-5
Krüsemann EJZ, Van Tiel L, Pennings JLA, et al. Both Nonsmoking Youth and Smoking Adults like Sweet and Minty E-liquid Flavors More Than Tobacco Flavor. Chem Senses. 2021;46. doi:10.1093/chemse/bjab009
Landry RL, Groom AL, Vu THT, et al. The role of flavors in vaping initiation and satisfaction among U.S. adults. Addictive Behaviors. 2019;99. doi:10.1016/j.addbeh.2019.106077
Ma S, Qiu Z, Yang Q, Bridges JFP, Chen J, Shang C. Expanding the E-Liquid Flavor Wheel: Classification of Emerging E-Liquid Flavors in Online Vape Shops. Int J Environ Res Public Health. 2022;19(21). doi:10.3390/ijerph192113953
Dagla I, Gikas E, Tsarbopoulos A. Two Fast GC-MS Methods for the Measurement of Nicotine, Propylene Glycol, Vegetable Glycol, Ethylmaltol, Diacetyl, and Acetylpropionyl in Refill Liquids for E-Cigarettes. Molecules. 2023;28(4). doi:10.3390/molecules28041902
Muthumalage T, Lamb T, Friedman MR, Rahman I. E-cigarette flavored pods induce inflammation, epithelial barrier dysfunction, and DNA damage in lung epithelial cells and monocytes. Sci Rep. 2019;9(1). doi:10.1038/s41598-019-51643-6
Muthumalage T, Prinz M, Ansah KO, Gerloff J, Sundar IK, Rahman I. Inflammatory and oxidative responses induced by exposure to commonly used e-cigarette flavoring chemicals and flavored e-liquids without nicotine. Front Physiol. 2018;8(JAN). doi:10.3389/fphys.2017.01130
Kosmider L, Sobczak A, Prokopowicz A, et al. Cherry-flavoured electronic cigarettes expose users to the inhalation irritant, Benzaldehyde. Thorax. 2016;71(4):376-377. doi:10.1136/thoraxjnl-2015-207895
Holden LL, Truong L, Simonich MT, Tanguay RL. Assessing the hazard of E-Cigarette flavor mixtures using zebrafish. Food and Chemical Toxicology. 2020;136. doi:10.1016/j.fct.2019.110945
Lee WH, Ong SG, Zhou Y, et al. Modeling Cardiovascular Risks of E-Cigarettes With Human-Induced Pluripotent Stem Cell–Derived Endothelial Cells. J Am Coll Cardiol. 2019;73(21):2722-2737. doi:10.1016/j.jacc.2019.03.476
Tavarez ZQ, Croft DP, Li D, et al. Fruit flavors in electronic cigarettes (ECIGs) are associated with nocturnal dry cough: A population longitudinal analysis. PLoS One. 2024;19(6 June). doi:10.1371/journal.pone.0306467
Strongin RM. Annual Review of Analytical Chemistry E-Cigarette Chemistry and Analytical Detection. Published online 2024. doi:10.1146/annurev-anchem-061318
Famele M, Ferranti C, Abenavoli C, Palleschi L, Mancinelli R, Draisci R. The Chemical Components of Electronic Cigarette Cartridges and Refill Fluids: Review of Analytical Methods. Nicotine & Tobacco Research. 2015;17(3):271-279. doi:10.1093/ntr/ntu197
Deng H, Tang S, Yang F, et al. Recent advances in the analysis of electronic cigarette liquids and aerosols: Sample preparation and chromatographic characterization. J Chromatogr A. 2023;1712. doi:10.1016/j.chroma.2023.464495
DeVito EE, Krishnan-Sarin S. E-cigarettes: Impact of E-Liquid Components and Device Characteristics on Nicotine Exposure. Curr Neuropharmacol. 2017;15. doi:10.2174/1570159x15666171016164430
Eddingsaas N, Pagano T, Cummings C, Rahman I, Robinson R, Hensel E. Qualitative analysis of e-liquid emissions as a function of flavor additives using two aerosol capture methods. Int J Environ Res Public Health. 2018;15(2). doi:10.3390/ijerph15020323
Augustini ALRM, Sielemann S, Telgheder U. Strategy for the identification of flavor compounds in e-liquids by correlating the analysis of GCxIMS and GC-MS. Talanta. 2021;230. doi:10.1016/j.talanta.2021.122318
Abouassali O, Chang M, Chidipi B, et al. In vitro and in vivo cardiac toxicity of flavored electronic nicotine delivery systems. Am J Physiol Heart Circ Physiol. 2021;320(1):H133-H143. doi:10.1152/AJPHEART.00283.2020
Winters BR, Kochar TK, Clapp PW, Jaspers I, Madden MC. Impact of E-Cigarette Liquid Flavoring Agents on Activity of Microsomal Recombinant CYP2A6, the Primary Nicotine-Metabolizing Enzyme. Chem Res Toxicol. 2020;33(7):1689-1697. doi:10.1021/acs.chemrestox.9b00514
Haworth-Duff A, Parkes GMB, Reed NJ. Profiling flavourings in strawberry-flavoured e-liquid using headspace-gas chromatography–mass spectrometry. Drug Test Anal. 2023;15(10):1077-1083. doi:10.1002/dta.3451
Aszyk J, Kubica P, Woźniak MK, Namieśnik J, Wasik A, Kot-Wasik A. Evaluation of flavour profiles in e-cigarette refill solutions using gas chromatography–tandem mass spectrometry. J Chromatogr A. 2018;1547:86-98. doi:10.1016/j.chroma.2018.03.009
Aszyk J, Woźniak MK, Kubica P, Kot-Wasik A, Namieśnik J, Wasik A. Comprehensive determination of flavouring additives and nicotine in e-cigarette refill solutions. Part II: Gas-chromatography–mass spectrometry analysis. J Chromatogr A. 2017;1517:156-164. doi:10.1016/j.chroma.2017.08.057
Tierney PA, Karpinski CD, Brown JE, Luo W, Pankow JF. Flavour chemicals in electronic cigarette fluids. Tob Control. 2016;25(E1):e10-e15. doi:10.1136/tobaccocontrol-2014-052175
Aszyk J, Kubica P, Kot-Wasik A, Namieśnik J, Wasik A. Comprehensive determination of flavouring additives and nicotine in e-cigarette refill solutions. Part I: Liquid chromatography-tandem mass spectrometry analysis. J Chromatogr A. 2017;1519:45-54. doi:10.1016/j.chroma.2017.08.056
Fürst P, Bernsmann T, Baumeister D. Optimization of GC-MS/MS for the Determination of Dioxins and PCBs in Feed and Food and Comparison of Results with GC-HRMS. Vol 49.; 2016. doi:10.1007/698_2016_460
Muthumalage T, Lamb T, Friedman MR, Rahman I. E-cigarette flavored pods induce inflammation, epithelial barrier dysfunction, and DNA damage in lung epithelial cells and monocytes. Sci Rep. 2019;9(1). doi:10.1038/s41598-019-51643-6
Lewis SW. Liquid and Thin-Layer Chromatography. Vol 3.; 2022. doi:10.1016/B978-0-12-823677-2.00053-2
Jaiswal AK, Millo T, Gupta M, Teotia AK, Tanwar TC, Gupta S. High Performance Liquid Chromatography (HPLC) and its forensic applications - A review. Journal of Forensic Medicine and Toxicology. 2008;25(2):19-31.
Chen X, Wang L. Analysis of the Application of High Performance Liquid Chromatography. In: IOP Conference Series: Earth and Environmental Science. Vol 769. ; 2021. doi:10.1088/1755-1315/769/3/032020
Ayala-Cabrera JF, Moyano E, Santos FJ. Gas chromatography and liquid chromatography coupled to mass spectrometry for the determination of fluorotelomer olefins, fluorotelomer alcohols, perfluoroalkyl sulfonamides and sulfonamido-ethanols in water. J Chromatogr A. 2020;1609. doi:10.1016/j.chroma.2019.460463
Rickard BP, Ho H, Tiley JB, Jaspers I, Brouwer KLR. E-Cigarette Flavoring Chemicals Induce Cytotoxicity in HepG2 Cells. ACS Omega. 2021;6(10):6708-6713. doi:10.1021/acsomega.0c05639
Durrani K, El Din SMA, Sun Y, Rule AM, Bressler J. Ethyl maltol enhances copper mediated cytotoxicity in lung epithelial cells. Toxicol Appl Pharmacol. 2021;410. doi:10.1016/j.taap.2020.115354
Staal YC, Gremmer E, Duijm G, et al. In Vitro Assessment of Translocation and Toxicological Effects of Nicotine and Ethyl Maltol from e-Cigarettes Using Air-Liquid Interface-Cultured Bronchial Epithelial Cells. Appl In Vitro Toxicol. 2024;10(1):1-14. doi:10.1089/aivt.2023.0019
Erythropel HC, Jabba SV, Dewinter TM, et al. Formation of flavorant-propylene Glycol Adducts with Novel Toxicological Properties in Chemically Unstable E-Cigarette Liquids. Nicotine and Tobacco Research. 2019;21(9):1248-1258. doi:10.1093/ntr/nty192
Muthumalage T, Prinz M, Ansah KO, Gerloff J, Sundar IK, Rahman I. Inflammatory and oxidative responses induced by exposure to commonly used e-cigarette flavoring chemicals and flavored e-liquids without nicotine. Front Physiol. 2018;8(JAN). doi:10.3389/fphys.2017.01130
Kerber PJ, Peyton DH. Kinetics of Aldehyde Flavorant-Acetal Formation in E-Liquids with Different E-Cigarette Solvents and Common Additives Studied by 1H NMR Spectroscopy. Chem Res Toxicol. 2022;35(8):1410-1417. doi:10.1021/acs.chemrestox.2c00159
Lu X, Sun L, Xie Z, Li D. Perception of the Food and Drug Administration Electronic Cigarette Flavor Enforcement Policy on Twitter: Observational Study. JMIR Public Health Surveill. 2022;8(3). doi:10.2196/25697
Havermans A, Krüsemann EJZ, Pennings J, De Graaf K, Boesveldt S, Talhout R. Nearly 20 000 e-liquids and 250 unique flavour descriptions: An overview of the Dutch market based on information from manufacturers. Tob Control. 2021;30(1):57-62. doi:10.1136/tobaccocontrol-2019-055303
Lestari KS, Humairo MV, Agustina U. Formaldehyde Vapor Concentration in Electronic Cigarettes and Health Complaints of Electronic Cigarettes Smokers in Indonesia. J Environ Public Health. 2018;2018. doi:10.1155/2018/9013430
Kowitt SD, Anshari D, Orlan EN, et al. Impact of an e-cigarette tax on cigarette and e-cigarette use in a middle-income country: A study from Indonesia using a pre-post design. BMJ Open. 2022;12(5). doi:10.1136/bmjopen-2021-055483

Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Aghnia Nabila, Mochammad Yuwono, Mochammad Taha Ma'ruf, Shalsa Septia Zulni

Artikel ini berlisensi Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.