Transformasi Profesi Akuntan di Era Artificial Intelligence (AI) : Systematic Literature Review

Authors

  • Sergius Fribontius Bon Universitas Nusa Cendana
  • I Komang Arthana Universitas Nusa Cendana

DOI:

https://doi.org/10.36733/juara.v15i1.11030

Keywords:

Accountant Profession, Artificial Intelligence, Systematic Literature Review

Abstract

This research aims to determine the impact of Artificial Intelligence (AI) on the accounting profession. This research uses the Systematic Literature Review (SLR) method to systematically evaluate previous research in order to increase the depth of analysis. Based on the results of the analysis, there were 12 articles that met the criteria. Based on the results of research using the Systematic Literature Review (SLR) method, the impact of the presence of AI on the accounting profession is, firstly, an increase in accuracy. Second, it can detect fraud. Third, increased efficiency, with AI the accounting process can be carried out more quickly and efficiently. Meanwhile, the challenges in using AI are, firstly, there are no standards for the use of AI in accounting and the rules regarding the use of AI in finance are still unclear. Second, AI cannot yet replace humans in making ethical judgments in complex situations. Third, you need to have new skills in analyzing data, understanding programming, and using AI tools. Fourth, the use of AI requires high costs.

Downloads

Download data is not yet available.

References

Andani, G., Lindrianasari, L., Oktavia, R., & Septiyanti, R. (2022). Indonesian Accounting Students’ Self-Confidence To Adopt Artificial Intelligence (Ai). Jurnal Akuntansi Dan Keuangan Indonesia, 19(1), 24–45. https://doi.org/10.21002/jaki.2022.02

Cahyono, S., & Ardianto, A. (2024). Big Data, Artificial Intelligence, and Management Accountant: a Global Perspective. Jurnal Bisnis Dan Akuntansi, 26(1), 1–16. https://doi.org/10.34208/jba.v26i1.2081

Chen, N., Sun, D., & Chen, J. (2022). Digital transformation, labour share, and industrial heterogeneity. Journal of Innovation & Knowledge, 7(4), 100248. https://doi.org/10.1016/j.jik.2022.100248

Chyzhevska, L., Voloschuk, L., Shatskova, L., & Sokolenko, L. (2021). Digitalization as a Vector of Information Systems Development and Accounting System Modernization. Studia Universitatis Vasile Goldis Arad, Economics Series, 31(4), 18–39. https://doi.org/10.2478/sues-2021-0017

Desmaryani, S., Soleh, A., Irmanelly, & Wiarta, I. (2024). Integration of technology acceptance models and government support to improve digital literacy. Heliyon, 10(14), e34086. https://doi.org/10.1016/j.heliyon.2024.e34086

Di Battista, A., Grayling, S., Hasselaar, E., Leopold, Till Alexander; Li, R., Rayner, M., & Zahidi, S. (2023). Future of Jobs Report 2023. In World Economic Forum, Geneva, Switzerland. https://www.weforum.org/reports/the-future-of-jobs-report-2023

Förster, K. (2024). Extending the technology acceptance model and empirically testing the conceptualised consumer goods acceptance model. Heliyon, 10(6). https://doi.org/10.1016/j.heliyon.2024.e27823

Fülöp, M. T., Topor, D. I., Ionescu, C. A., Cifuentes-Faura, J., & Măgdaș, N. (2023). ETHICAL CONCERNS ASSOCIATED WITH ARTIFICIAL INTELLIGENCE IN THE ACCOUNTING PROFESSION: A CURSE OR A BLESSING? Journal of Business Economics and Management, 24(2), 387–404. https://doi.org/10.3846/jbem.2023.19251

Hu, K. H., Chen, F. H., Hsu, M. F., & Tzeng, G. H. (2023). Governance of artificial intelligence applications in a business audit via a fusion fuzzy multiple rule-based decision-making model. Financial Innovation, 9(1). https://doi.org/10.1186/s40854-022-00436-4

Huang, F., No, W. G., Vasarhelyi, M. A., & Yan, Z. (2022). Audit data analytics, machine learning, and full population testing. Journal of Finance and Data Science, 8, 138–144. https://doi.org/10.1016/j.jfds.2022.05.002

Keele, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering Guidelines for performing Systematic Literature Reviews in Software Engineering (Vol. 5). Technical Report, Ver. 2.3 Ebse Technical Report.

Lakshmi, V., & Bahli, B. (2020). Understanding the robotization landscape transformation: A centering resonance analysis. Journal of Innovation and Knowledge, 5(1), 59–67. https://doi.org/10.1016/j.jik.2019.01.005

Law, K., & Shen, M. (2020). How Does Artificial Intelligence Shape the Audit Industri? SSRN Electronic Journal, 1. https://doi.org/10.2139/ssrn.3718343

Li, L. (2022). Reskilling and Upskilling the Future-ready Workforce for Industri 4.0 and Beyond. Information Systems Frontiers, 26(5), 1697–1712. https://doi.org/10.1007/s10796-022-10308-y

Lidwina, A. (2020). Industri yang Telah Gunakan Kecerdasan Buatan/AI di Dunia (2017). Katadata.Co.Id. https://databoks.katadata.co.id/ekonomi-makro/statistik/9377cd0c945fc61/industri-apa-saja-yang-telah-gunakan-kecerdasan-buatan

Manyika, J., & Sneader, K. (2018). AI, automation, and the future of work: Ten things to solve for. Mckinsey & Company. https://www.mckinsey.com/featured-insights/future-of-work/ai-automation-and-the-future-of-work-ten-things-to-solve-for

Mbizi, R., Sifile, O., Gasheja, F., Twesige, D., Gwangava, E., Makurumidize, S., Matowanyika, K., Chinofunga, S., & Sunday, K. (2022). Accountants in Africa and the evolving fourth industrial revolution (4IR): Towards a competency framework. Cogent Business and Management, 9(1). https://doi.org/10.1080/23311975.2022.2117153

Mgammal, M. H. (2024). The influence of artificial intelligence as a tool for future economies on accounting procedures: empirical evidence from Saudi Arabia. Discover Computing, 27(1). https://doi.org/10.1007/s10791-024-09452-7

Mittal, P., Kaur, A., & Gupta, P. K. (2021). The mediating role of big data to use forensic accounting. European Journal of Business Science and Technology, 7(1), 47–58.

Mohd Faizal, S., Jaffar, N., & Mohd nor, A. S. (2022). Integrate the adoption and readiness of digital technologies amongst accounting professionals towards the fourth industrial revolution. Cogent Business and Management, 9(1). https://doi.org/10.1080/23311975.2022.2122160

Murikah, W., Nthenge, J. K., & Musyoka, F. M. (2024). Bias and ethics of AI systems applied in auditing - A systematic review. Scientific African, 25, e02281. https://doi.org/10.1016/j.sciaf.2024.e02281

Ritz, W., Wolf, M., & McQuitty, S. (2019). Digital marketing adoption and success for small businesses: The application of the do-it-yourself and technology acceptance models. Journal of Research in Interactive Marketing, 13(2), 179–203. https://doi.org/10.1108/JRIM-04-2018-0062

Sarker, I. H. (2022). AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems. SN Computer Science, 3(2), 1–20. https://doi.org/10.1007/s42979-022-01043-x

Tempomona, I. A. O., Yusuf, R. M., & Paranoan, S. (2023). Urgensi Artificial Intelligence Dalam Transformasi Akuntan(Si). Jurnal Akuntansi Multiparadigma, 14(3), 536–551. https://doi.org/10.21776/ub.jamal.2023.14.3.37

Thottoli, M. M. (2022). The ICT Antecedents and Sole Proprietary Practicing Audit Firms: A Quantitative Study. Australasian Accounting, Business and Finance Journal, 16(1), 85–100. https://doi.org/10.14453/aabfj.v16i1.6

Downloads

Published

2025-03-01